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Summary 
 
 

Many important decisions regarding water management, agriculture, and energy are made 
on weekly, monthly, seasonal, and annual timescales.  These decisions can benefit from high 
quality, reliable predictions.  Yet making useful predictions about the climate system on these 
timescales is a challenge.  The purpose of this report is to examine current capabilities for 
making such intraseasonal to interannual (ISI)1 predictions for the climate system, to analyze 
how past improvements in these capabilities have been achieved, and to recommend 
opportunities for future improvement. 

ISI climate predictions occupy an intermediate timescale between traditional weather 
forecasts, which are useful for the coming days, and global climate simulations associated with 
climate change, which relate to changes occurring over decades and centuries (see Box S.1).  
Predicting the climate at this intermediate timescale poses unique challenges since it involves 
many processes that operate among the atmosphere, ocean, and land surface.  These processes 
are often incompletely understood and difficult to measure with available observational 
platforms.  There are limits to the spatial and temporal resolution of our observations, and a 
“perfect” or complete observation of the climate system will never be achieved.  Numerical 
models of the climate system demonstrate large sensitivity to initial conditions that cause errors 
or uncertainties to grow with increases in forecasting lead times. Moreover, models are known to 
have errors in formulation and are limited in resolution, which can also lead to forecast errors. 

 
BOX S.1 

MODELS FOR PREDICTING THE WEATHER VERSUS  
MODELS FOR PREDICTING CLIMATE 

 
To understand climate prediction, it is useful to distinguish it from weather forecasting, 

which is a familiar concept to many from everyday experience. Weather models derive their 
prediction skill from accurate knowledge of initial conditions in the atmosphere. They produce 
deterministic forecasts, often with high enough skill that they can be used for simple everyday 
decisions, such as choosing proper clothing, or to warn us of short-term weather threats, such as 
lightning, severe winds, or intense precipitation. Climate models, on the other hand, derive much 
of their prediction skill from knowledge of the initial conditions in slowly evolving components 
of the climate system, such as the ocean or the cryosphere. The predictions produced by climate 
models are inherently probabilistic and have considerably lower skill than 1-2 day weather 
forecasts. They are usually of little use in planning everyday activities. However, climate 
predictions are very useful to government agencies, non-governmental organizations, and private 
companies for policy and longer-term planning purposes. Examples of applications include 
drought mitigation, malaria prevention, farming, pricing of insurance, and managing energy 
resources. 

                                                 
1 Intraseasonal to interannual is defined as extending from roughly two weeks to several years.  
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The committee was requested to assess how researchers and forecasters have addressed 

these challenges and to recommend avenues for further progress.  Specifically, the committee 
was tasked to review the current understanding of ISI predictability, describe how past 
improvements in forecast systems have occurred, identify gaps in our current understanding of 
ISI predictability, assess the performance of current ISI forecast systems, and recommend 
strategies and best practices for future improvements to ISI forecasts and our overall 
understanding of ISI predictability. 

The committee begins from the premise that the ability to predict the climate accurately 
at ISI timescales stems from our knowledge of “sources of predictability,” the variables or 
processes operating within and among the atmosphere, ocean, and land that affect the state of the 
climate on ISI timescales.  The sources of predictability are measured, represented, and 
simulated by ISI forecast systems through an assemblage of “building blocks,” namely 
observational systems, statistical and dynamical models, and data assimilation schemes.  This 
report illustrates the relationship between the sources of predictability and the building blocks of 
ISI forecast systems.  In addition, this report discusses techniques and protocols for the 
verification and dissemination of ISI forecasts by operational forecasting centers, highlighting 
the impact that these practices can have on forecast quality and opportunities for improvement.  
This report concludes with recommendations for improving ISI forecast systems, targeting both 
operational forecasting centers and the broader research community.  

 
 

SOURCES OF PREDICTABILITY 
 
This report explores three interrelated categories of predictability sources that exist 

within the climate system.  The first of these sources of predictability is related to particular 
variables that exhibit inertia or memory, such as ocean heat content, in which anomalous 
conditions can take relatively long periods of time (days to years) to decay.  The second type of 
source of predictability is related to patterns of variability or feedbacks.  Coupling among 
processes in the climate system can give rise to characteristic patterns that explain some portion 
of the spatial and temporal variance exhibited by key climate variables, such as temperature or 
precipitation.  An example is the El Niño-Southern Oscillation (ENSO), where anomalous 
conditions in the tropical Pacific Ocean influence seasonal climate in the mid-latitudes around 
the globe.  The third source of predictability is due to external forcing.  Volcanic eruptions, 
changes in solar activity, and the accumulation of greenhouse gases in the atmosphere are all 
examples of external forcing.  These events or processes can affect the climate on ISI timescales 
in predictable ways that can be exploited for making climate predictions.  

It is important to note that the processes that affect the climate on ISI timescales can 
themselves operate on a variety of timescales.  This is depicted in Figure S.1, which provides 
many examples of processes that affect the climate at ISI timescales and can serve as sources of 
predictability.  These sources can be related to phenomena that occur in, on, or among the ocean, 
atmosphere, and land surface components of the climate system.   

The ability of ISI forecast systems to represent these sources of predictability accurately 
partially determines the quality of the predictions.  Past improvements in prediction quality have 
accompanied increased understanding of the sources of predictability and incorporation of this 
understanding into forecast systems.  Future advances in the quality of ISI predictions are closely  
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FIGURE S.1  Processes that act as sources of ISI climate predictability extend over a wide range 
of timescales and involve interactions among the atmosphere, ocean, and land.  CCEW: 
convectively coupled equatorial waves; TIW: tropical instability wave; MJO/MISV: Madden-
Julian Oscillation/Monsoon intraseasonal variability; NAM: Northern Hemisphere annular mode; 
SAM: Southern Hemisphere annular mode; AO: Arctic oscillation; NAO: North Atlantic 
oscillation; QBO: quasi-biennial oscillation, IOD/ZM: Indian Ocean dipole/zonal mode; AMOC: 
Atlantic meridional overturning circulation. For the y-axis, “A” indicates “atmosphere;” “L” 
indicates “land;” “I” indicates “ice;” and, “O” indicates “ocean.”  
 

 
tied to exploiting new sources of predictability or improving the representation of known sources 
of predictability in current forecast systems. 

 
 

THE BUILDING BLOCKS OF AN ISI FORECAST SYSTEM 
 

ISI forecasting systems are composed of several “building blocks:” observations, 
statistical and dynamical models, and data assimilations systems.  Observations are required to 
measure the state of the variables that contain memory in the climate system; to monitor the 
evolution of key processes that operate within and among the atmosphere, ocean, and land; and 
to identify the magnitude of external forcing.  These observations can be utilized by a data 
assimilation system to provide the current state (an “initial state”) of the climate system, and that 
information can be utilized by statistical and/or dynamical models to make predictions.  
Observations are required to validate models, verify forecasts, and expand understanding of 
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underlying climate processes.  These activities can then feedback into identifying model 
deficiencies and improving model formulations. 

The performance of ISI forecast systems can be enhanced through improvements to these 
building blocks, which are intimately connected.  For example, if new observations are made 
available, then it is likely that new components of statistical and dynamical models or data 
assimilation algorithms need to be developed in order to incorporate these observations into 
forecasts.  Conversely, a comparison of existing models to novel observations or models may 
identify underlying deficiencies in our understanding of important climate processes, motivating 
further model development.  Thus, improvements to ISI forecast systems stem from synergistic 
improvements across each of the building blocks, where upgrades to one component enhance, or 
are enhanced by, upgrades to the other components.   

Based on its examination of the literature, the committee concludes that incremental 
increases in ISI forecasting quality are to be expected as the building blocks of ISI forecast 
systems are improved and upgraded.  The committee also concludes that there are no “silver 
bullets;” there is no single action that will lead to a revolutionary leap forward in ISI predictions.  
As past improvements to ISI predictions and weather predictions have shown, progress forward 
can be achieved by a concerted effort to address the shortcomings of the various building blocks 
of forecast systems. 

 
 

CASE STUDIES 
 
Much can be learned about ISI predictions by exploring case studies for ENSO, the 

Madden-Julian Oscillation (MJO), and soil moisture.  Such case studies demonstrate the role that 
observations, models, data assimilation techniques, and verification protocols play in making ISI 
forecasts.  For ENSO, the perspective is somewhat historical, as many previous advances in ISI 
forecasting have come from an improved observational capacity that accompanied expanded 
understanding of physical processes and model development.  For the MJO and soil moisture, the 
perspective is more forward-looking.  There remains the potential to exploit the MJO and soil 
moisture to improve ISI forecasts.  

 
 

ISI FORECASTING INSTITUTIONS 
 
ISI forecasts, along with the building blocks for forecasting, are developed, produced, 

and processed by a variety of institutions around the world, including the National Centers for 
Environmental Prediction (NCEP), the European Centre for Medium Range Forecasting 
(ECMWF), the International Research Institute for Climate and Society (IRI), and many 
universities and research laboratories.  The committee draws a distinction between “operational 
centers” and “research institutions.”  The former issue forecasts in real time on a fixed, regular 
schedule and are associated with a national meteorological and hydrological service; the latter 
are more research-oriented and are often associated with universities and academic scientists.  
Programs that can foster collaboration between these two types of institutions have been 
successful in advancing ISI forecast quality, and several of the recommendations aim to 
encourage further collaboration and enhance existing mechanisms for cooperation.  
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USE OF FORECASTS 
 

 Quality forecasts can contribute to societally-relevant decisions.  However, a variety of 
metrics can be used to determine overall forecast quality; a single metric rarely encapsulates all 
the information regarding forecast quality.  Likewise, different decision makers will rely on a 
diverse set of variables (e.g. agricultural planners may be most interested in precipitation, while 
wind power operators may be most interested in wind forecasts), and may have varying demands 
for the forecast quality associated with these variables.  

The report describes the procedure of making ISI forecasts, outlining how information 
from various sources, both objective (e.g., predictions from dynamical or statistical models) and 
subjective (e.g., expert opinions of forecasters), are combined.  The wide range of forecast 
formats and accessible forecast documentation makes it challenging to compare the performance 
of forecast systems or detect how changes in forecast inputs and practices affect overall forecast 
performance.  Similarly, the variables and formats of forecasts may not correspond to the needs 
of decision makers, acting as a barrier to the use of forecasts, regardless of their quality.   

 
 

RECOMMENDATIONS 
 

The committee identified three general categories of actions to advance ISI predictions: 
Best Practices, Improvements to the Building Blocks of ISI Forecast Systems, and Research for 
Sources of Predictability. Best Practices are largely focused on the activities of the operational 
forecast centers and aim to improve the delivery and dissemination of forecast information for 
both decision makers and researchers. Although adopting Best Practices may require some 
additional resources on the part of the operational centers, the barriers to adoption are relatively 
minimal; many of the recommendations involve modification to current protocols or expansion 
of current programs rather than a novel set of initiatives.   

The Improvements to the Building Blocks of ISI Forecast Systems pertain to both the 
operational and research communities and focus on the continued development of observations, 
statistical and dynamical models, and data assimilation systems.  The benefits associated with 
these recommendations have a longer time horizon than those associated with Best Practices and 
may require several years to achieve.   

Research for Sources of Predictability, the final category of the recommendations, is 
aimed primarily toward the research community.  These recommendations constitute specific 
goals for current and future academic exploration of ISI processes.  Although the committee 
agrees that these goals should be pursued with the intent that they contribute to operational ISI 
forecasts, the initial efforts to investigate these unexploited sources of predictability fall largely 
on research scientists.   
 
Best Practices 
 
(1) The synergy between operational ISI forecasting centers and the research community 
should be enhanced. 

Establishing connections between the operational and research communities is critical to 
further progress in ISI forecasting.  Fostering dialog and exchange between these communities 
permits identification of common problems and expands the sets of tools available for finding 
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solutions.  Specific activities include holding workshops focused on specific areas of model and 
forecast development, encouraging scientists that work at operational centers to participate in 
scientific meetings focused on modeling and the use of observations, granting of short term 
positions in operational centers to academic researchers, and improving the speed and manner by 
which new data sets generated by operational centers are shared with the broader research 
community. 
 
(2) Operational ISI forecasting centers should establish public archives of all data used in 
forecasts including observations, model code, hindcasts, analyses, forecasts, re-analyses, re-
forecasts, verifications, and official forecast outlooks. 

Archives of the inputs to, outputs of, and tools used in ISI forecasts are needed in order to 
quantify and identify sources of forecast error, provide the baseline for forecast assessment and 
model fidelity, develop metrics and diagnostics for model assessment, calibrate model 
predictions, and document model and forecast improvements.  

Archives can serve as an important mechanism for making ISI forecasts more readily 
useable for management decisions and societally relevant research.  Although it is not possible 
for operational centers to foresee or address all possible needs of the forecast users, archives will 
permit the development of tailored forecast products for decision systems and risk management 
by users and researchers. Once engaged, these groups can also provide valuable feedback for 
further improvements in ISI forecasting.  
 
(3) Operational ISI forecasting centers should broaden and make available the collection of 
metrics used to assess forecast quality. 

No perfect metric exists that conveys all the information about a forecast. Multiple 
metrics should be used when assessing forecasts, including graphical techniques; metrics that 
assess the quality of probabilistic information and that from multi-model ensembles. Some of 
these metrics should include information on the distribution of forecast skill in space and time. 
 
(4) The subjective components of operational ISI forecasts should be minimized.  

Recent research suggests that the subjective component of many present-day forecasts 
can reduce forecast quality. The subjective component generally comes from qualitative 
discussion and interpretation by forecasters regarding the state of the climate system and 
forecasting tools. The subjective component also limits reproducibility, restricting retrospective 
comparison of forecast systems.  
 
Improvements to the Building Blocks of Forecast Systems 
 
(5) Statistical techniques, especially nonlinear methods, should be pursued in order to 
better characterize processes that contribute to ISI forecasts.  

Statistical methods provide important tools for comparing model predictions and 
observations and subsequently identifying model deficiencies.  Historically, linear statistical 
analyses of observational data have provided an awareness of many patterns of variability that 
have been useful for making ISI forecasts.  Recent research demonstrates that nonlinear methods 
can yield statistically significant increases in prediction skill on ISI time scales when compared 
to traditional linear techniques.  However, these techniques have not been incorporated 
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operationally.  Therefore, nonlinear alternatives should be explored to augment our current 
knowledge.  
 
(6) Systematic errors in dynamical models should be identified. 

Current state-of-the-art ISI prediction models have relatively large errors in their 
representation of the mean climate, the climate variability, and their interaction.  These errors 
reduce prediction quality. Some classic examples include: (1) the so-called double intertropical 
convergence zone (ITCZ) problem, (2) the excessively strong equatorial cold tongue, (3) weak or 
incoherent intraseasonal variability, (4) failure to represent the multi-scale organization of 
tropical convection, and (5) poorly represented cloud processes, particularly low level stratus. 
These errors have both regional and global impacts and could be indicative of errors in the model 
formulations that are limiting prediction quality.  

Sustained observations are needed to quantify model errors. Examples of sustained 
observations include those related to describing the properties or fluxes among the atmosphere, 
ocean, and land surface (e.g., boundary layer humidity, exchange of heat between the atmosphere 
and ocean).  
 
(7) To reduce errors produced by dynamical models, the representation of physical 
processes should be improved. 

The physical processes underlying ISI variability are often poorly understood.  Process 
studies that are closely tied to operational ISI model improvement should be carried out with the 
goal of transferring improvements into operational ISI forecasts.  Targeted, novel observations 
will likely play a role in these types of studies.  Studies could focus on specific components of 
the climate system (e.g., sea ice, aerosols, snow cover), specific processes and variability (e.g., 
triggering the onset of an MJO), and the interactions among components of the climate system 
(e.g., air-land coupling strength, stratosphere-troposphere interactions).  

The CLIVAR climate process teams (CPTs), which exist currently, provide a mechanism 
for accomplishing this.  The CPTs focus modelers and process scientists on poorly-represented 
or unrepresented physical processes in models. 

Work should be carried out to move toward more complete inclusion of climate processes 
in the models.  Computing capabilities should be improved to permit the explicit simulation of 
subgrid-scale processes and remove as much reliance on parameterization as possible.  The role 
of increasing model resolution in improving ISI forecasts should continue to be explored.  
 
(8) Statistical and dynamical models should continue to be used in a complementary 
fashion by operational ISI forecasting centers. 

Using multiple prediction tools leads to improved and more complete ISI forecasts.  
Statistical tools should continue to be developed and employed in an effort to improve dynamical 
model output. Examples of statistical techniques include stochastic physics, interactive 
ensembles, empirical corrections or empirically-based parameterizations and process models.  

The use of statistical and dynamical downscaling methods is another application that 
should be explored to address the information mismatch between the coarse spatial resolution of 
operational climate forecasts and the fine resolution needs of some end users. 
 
(9) Multi-model ensemble (MME) forecast strategies should be pursued, but standards and 
metrics for model selection should be developed. 
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Continued work is necessary to develop techniques of optimally selecting and weighting 
ensemble members.  Experimentation with MME should not compete with model improvement, 
but rather, should contribute to the process of identifying areas for model improvement.   
 
(10) To enable assimilation of all available observations of the coupled climate system, 
operational centers should implement state-of-the-art 4-D Var, Ensemble Kalman Filters, 
or hybrids of these in their data assimilation systems. 

The most advanced assimilation systems are typically not used in operational settings or 
are limited to atmospheric observations only.  Assimilation systems should be upgraded.   

There are many available observations that are not currently being utilized in data 
assimilation schemes that could contribute to the initialization of dynamical models.  More 
observations should be assimilated into operational ISI forecast systems.  The expansion of the 
variables assimilated in weather forecasts has contributed to improvements in forecast quality.  
Analogous gains could be made for ISI forecasting.  Priority should be given to expanding 
operational data assimilation to ocean observations such as sea surface heights. 
 
Research for Sources of Predictability 
 
(11) Many sources of predictability remain to be fully exploited by ISI forecast systems.  To 
better understand key processes that are likely to contribute to improved ISI predictions, 
the committee recommends that the scientific community pursue the following six areas as 
research goals. 
 
Madden-Julian Oscillation (MJO) 
 The path forward on understanding and forecasting the MJO should include focused 
process studies, model improvement, and close collaboration between research and operational 
communities.  It will be necessary to develop and implement standardized diagnostics and 
metrics to gauge model improvements and track improvements in forecast quality.  MJO 
influences on other important components of the climate system, such as ENSO, monsoon onsets 
and breaks, and tropical cyclone genesis should continue to be explored and exploited for 
additional predictability. 
 
Stratosphere-Troposphere Interactions 

Relatively long-lived (up to two months) atmospheric anomalies can arise from 
stratospheric disturbances.  In sensitive areas such as Europe in winter, experiments suggest that 
the influence of stratospheric variability on land surface temperatures can exceed the local effect 
of sea surface temperature. Additionally, while our weather and climate models do not often 
resolve or represent the stratospheric Quasi-Biennial Oscillation very well, it is one of the more 
predictable features in the atmosphere, and it has been found to exhibit a signature in ISI surface 
climate.   
 
Ocean-atmosphere coupling 
 Due to the very large heat capacity of sea water, anomalous sea surface temperatures and 
upper ocean heat content can have significant impacts on the atmosphere above.  The impacts of 
the anomalies associated with ENSO are well-known.  However, further research is needed to 
examine the role of extratropical atmosphere-ocean coupling, to investigate the need to more 
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realistically represent ocean-atmosphere coupling over a wide range of spatial scales (including 
down to the scales of the sharp SST gradients associated with fronts), and to better observe and 
more realistically represent air-sea fluxes in models.  
 
Land-atmosphere feedbacks 
 The realistic initialization of soil moisture in models can increase the accuracy of 
precipitation and temperature predictions at intraseasonal timescales.  The realistic initialization 
of snow amount may also yield better quality predictions, though this connection is relatively 
unexplored.  To maximize the impact of land feedbacks on prediction quality, the mechanisms 
underlying the land-atmosphere coupling (e.g., evaporation, boundary layer dynamics, 
convection) need to be better understood and better represented in forecast systems. 
 
High impact events affecting atmospheric composition 

Research efforts should study the consequences on the climate system at ISI timescales of 
unusual but high impact events, such as volcanic eruptions, limited nuclear exchanges, or space 
impacts that cause a sudden, drastic change to the atmospheric burden of aerosols and trace 
gases.  ISI forecasts from operational centers following these types of events could have 
significant societal ramifications. 
 
Non-stationarity  

Statistical and dynamical models for ISI forecasting should be improved to better capture 
the predictability associated with long-term trends in atmospheric composition (e.g., increases in 
greenhouse gas concentrations) and land cover change.  Current statistical techniques and 
dynamical models do not adequately deal with this non-stationarity.  Improved statistical 
techniques should be developed for exploiting the predictability associated with such non-
stationary behavior. The use of dynamical models that include a more comprehensive treatment 
of radiative processes such as aerosol effects, and also incorporate trends in land use, could help 
improve the quality of dynamical ISI forecasts on longer timescales. 
 
 

CLOSING THOUGHTS 
 
For the short term, operational ISI forecast centers can increase the value of forecasts to 

decision makers and researchers by modifying procedures for archiving and disseminating 
forecast information and enhancing collaborations with the external research community. Over 
the next several years and coming decades, improvements to observational capabilities, statistical 
and dynamical models, and data assimilations systems should permit ISI forecast systems to 
better represent the variables and processes that serve as sources of predictability.  Research to 
characterize sources of predictability that are poorly understood should also offer opportunities 
to improve ISI predictions as well as our understanding of important underlying climate 
processes. 
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1 
Introduction 

 
 

SCOPE AND PURPOSE OF THIS REPORT 
  

This study responds to a request by the National Oceanic and Atmospheric 
Administration (NOAA) to the National Academy of Sciences to review the current 
understanding of climate predictability on ISI timescales, including past improvements in our 
understanding of predictability; to identify remaining gaps in our understanding of predictability 
at these timescales; to assess the performance of current prediction systems; and to recommend 
strategies and best practices for improving estimates of predictability and prediction skill (see 
Box 1.1).   
 In preparing the report, the committee has drawn on published literature as well as from 
presentations from a variety of research scientists and forecasting experts representing both U.S. 
and international institutions.  Due to the experiences of the committee members and the source 
of the report request, the report tends to focus most heavily on climate predictions for the United 
States and North America.  In contrast to the U.S.-focus regarding predictions, the 
recommendations regarding forecasting procedures and protocols (Best Practices) have been 
crafted based upon forecasting experiences from the United States and abroad.  These have been 
drawn from and could be applicable to many national and international institutions.  Likewise, 
many of the physical processes discussed (e.g., ENSO, MJO, NAO) have significant impacts on 
non-U.S. climate phenomena, such as the Indian monsoon.   

The committee feels that this report will inform and guide decisions regarding future 
opportunities in climate research and operational forecasting.  Significant challenges remain in 
formulating and disseminating accurate and useful forecasts at the intraseasonal and interannual 
timescales.  Significant opportunities exist for the research community to expand its knowledge 
of climate processes, especially with respect to the coupling among components of the climate 
system, and improving observational systems, statistical and dynamical models, and data 
assimilation techniques.  Likewise, for the operational community, opportunities exist to verify, 
catalog, and share forecasts in a more systematic manner.  Overall, better communication 
between the research and operational communities is required for all of these improvements to be 
achieved.   

 
Introduction to the Climate System 

 
The sun serves as the primary energy source for the climate system, and day-to-day and 

season-to-season changes in the solar radiation received by the Earth lead to some well-
recognized changes in the climate system.  For example, on a clear, calm day, sea surface 
temperature (SST) in the tropics and mid-latitudes can warm as much as 3°C during the day.  At 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

12 Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 
 

 

the same sites, we observe warming and an increase in SST through the spring and into the 
summer followed by cooling and a decrease in SST through the fall and winter. These changes in 
SST occur in concert with seasonal changes in surface winds.  These types of day-to-day and 
season-to-season variability, caused by strong, regular, and periodic external forcing from the 
sun can be accurately predicted.    

But beyond these daily and seasonal cycles, the dynamics of the climate system are more 
complex and incompletely understood, challenging our efforts to make predictions.  For 
example, to answer a question like “Will the upcoming winter be colder or wetter than usual?” 
requires an understanding of climate variability on the timescales of weeks, months, and years.  
This variability stems from the atmosphere, the ocean, the land, and the coupling between them.  
How these components of the climate system interact and affect one another can be understood 
by examining how they exchange heat, moisture, and momentum.  For example, the ocean 
absorbs heat from the sun and can also transport that heat and release it elsewhere on the earth’s 
surface.  At mid- and high-latitudes, cooling and evaporation make surface water denser and, 
through convection, force surface water into the ocean’s interior.  Both the density differences in 
the ocean and the action of the wind on the sea surface drive a global, three-dimensional 
circulation in the ocean that results in spatial and temporal variability in SST.  Likewise, solar 
heating and turbulent heat and moisture fluxes at the ocean and land surfaces drive atmospheric 
circulations on a wide range of scales from global to local.  Moist, warm parcels of air near the 
surface become buoyant, and this convection can communicate the influence of the surface 
broadly through the atmosphere and, in turn, to remote surface locations.  In contrast, cooling or 
evaporation within the lower atmosphere stabilizes the atmospheric boundary layer locally and 
limits the ability of the surface to force the atmosphere elsewhere.   

The ability of the atmosphere, ocean, and land to interact and affect one another occurs 
over a broad range of spatial scales and timescales.  These interactions give rise to complex, 
often nonlinear, dynamics making it difficult to understand and predict the climate variability 
that we observe.  While much progress has been made extending weather forecast skill to a week 
or more, the ability to make predictions on timescales longer than two weeks is still limited.  At 
shorter timescales, most of the important dynamics reside within the atmosphere.  But for longer 
timescales, the storage of heat and moisture by the ocean and the land becomes more important.  
Unfortunately, we have less information about the ocean and the land than we have about the 
atmosphere, and we often lack a full understanding of the interactions among the three.   

 
 

Committee Approach to Predictability 
 

Historically, deterministic “predictability” of chaotic systems like day-to-day weather 
processes has referred to how relatively small errors in the initial conditions lead to relatively 
large forecast errors some time later—typically 10–14 days. Although developed in the context 
of weather prediction, this concept of deterministic predictability has also been applied to 
predictions of the entire climate system, including those on ISI timescales.  However, over time, 
the term “predictability” has been used in confusing ways in the atmospheric and oceanic 
literature.  In this report, the term “predictability” is used qualitatively to describe the extent to 
which the representation of a physical process can contribute to and perhaps even improve 
prediction quality.  There are two important aspects of the committee’s approach to the concept 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

Introduction  13 

of predictability: 
 
• It is not possible to quantify a true limit of predictability for the climate system. 
• Quantitative statements can be made regarding the lower bounds of predictability, as derived 

by the performance of existing forecast systems.  If a forecast system shows quantitative skill 
according to some metric, then at least that much predictability must exist in nature. 
 

The approach that the committee has pursued impacts its ability to fulfill its requested 
tasks.  Underlying several parts of the Statement of Task is an assumption that nature contains 
inherent predictability limits that can be accurately and quantitatively estimated through the 
analysis of observations and/or model results.  In particular, Task 4 (see Box 1.1) asks the 
committee to:   
 

Assess the performance of current prediction systems in relation to the estimated 
predictability of the climate system on intraseasonal to interannual timescales, and 
recommend strategies (e.g.,observations, model improvements, and research 
priorities) to narrow gaps that exist between current predictive capabilities and 
estimated limits of predictability. 
 
The committee finds that presently observational estimates of predictability are severely 

limited—the observational record is too short and the estimates require assumptions about the 
observational data (e.g. stationarity) that are difficult to satisfy. Model-based estimates of the 
intrinsic predictability2 can also be made but are severely limited by the fidelity of the model. 
For example, model predictability estimates of the ENSO cycle could in principle span the gamut 
from zero predictability (modeling the cycle as a white noise process) to perfect predictability 
(modeling it as a sine wave).  Of course, modelers use much more physically-based 
representations of ENSO; nevertheless, the predictability a model produces is unequivocally a 
function of the underlying model assumptions—the discretization of flow equations, the 
parameterizations of physical processes, and so on.  Model-based ENSO predictability estimates 
vary widely among models, and for this and any other such process a higher estimate of 
predictability is not intrinsically a more accurate one.3  

The committee finds that model-based estimates of the intrinsic limit of predictability are 
useful in a qualitative sense. While the studies themselves may very well be quantitative in 
implementation and analysis, they are best used to identify physical processes that impact the 
model-based estimate and therefore provide qualitative guidance in how to attack the forecast 
improvement problem in that model.  (A simple example: if Model A shows no intrinsic 
predictability for a variable in a region where Model B shows some real forecast skill for that 
variable, then process formulations underlying that variable in Model A are deficient and could 
be a focus of improvement.) In fact, the committee recommendations are specifically designed to 
identify the infrastructure needs (i.e., observations, models, best practices) that will accelerate 

                                                 
2 Intrinsic predictability is the extent to which the prediction is possible if an optimum procedure is used 
(see “The Concept of Predictability” in Chapter 2; Lorenz, 2006). 
3 These considerations and conclusions are not limited to ENSO but could also be said of the MJO and 
other sources of predictability.  
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the process of transitioning the qualitative guidance into quantitative forecast improvements. 
This process will necessarily involve rigorous forecast verification. 

Despite the utility of model-specific estimates of the limits of intrinsic predictability for 
individual model development, the committee finds that the only quantitative statements that can 
be made regarding predictability in nature involve its lower bounds, as provided by verifying 
forecasts from existing prediction systems. In other words, if a forecast system shows true 
quantitative skill at some level, then at least that much predictability must exist in nature.  This 
sentiment underlies much of the analysis in the report, and can be illustrated with an example. 
Suppose a statistical prediction of a measure of the strength of ENSO such as the Nino 3.4 index 
(the departure of the monthly mean SST inside a box bounded by 120°W–170°W and 5°S–5°N 
from its long-term mean) is of higher quality than a dynamical prediction.  It could then be 
concluded that additional forecast quality can be obtained with a more accurate dynamical 
method.  If estimates for the upper bound of predictability in nature could be derived, they would 
be uniquely valuable since they would indicate how much quality may yet be derived through 
future improvements in forecasting systems.  In other words, such estimates could indicate how 
much potential quality is waiting to be tapped.  Unfortunately, such estimates are inaccessible.  
The true limits of predictability cannot be quantified with any certainty because there is no way 
of estimating predictability without models or, in the case of observational data, ad hoc 
assumptions. 

Despite the inability to unambiguously quantify the intrinsic or upper “limit of 
predictability,” the committee was able to assess the performance of forecast systems. The 
quantitative assessment of forecast quality is a useful lower bound on predictability. It is clear 
that the skill of models has improved over time (Fig 1.1), at least with respect to the types of 
ENSO-based metrics that are usually discussed in the literature and has recently been evident 
with respect to advances in MJO forecasting as well (see “Dynamical Models” section in Chapter 
3 and the MJO and ENSO case studies in Chapter 4 for a more specific discussion).  With regard 
to the current generation of forecast systems, attempts to perform a rigorous evaluation of 
forecast quality have been made using available archives and multi-model ensemble systems 
(e.g., Climate-system Historical Forecast Project (CHFP), ENSEMBLES).  However, these 
initiatives are relatively recent. The multitude of available forecast formats and metrics4, and the 
lack of openly available data and information regarding past forecasts and verifications can make 
it difficult to compare across, or even conduct, such studies.  The Best Practice 
recommendations, especially with respect to archiving forecast information and metrics, have 
been designed to help facilitate the establishment of a framework for comparing and evaluating 
estimates of prediction quality (i.e. lower bounds on predictability) derived from forecast 
models. 

 

                                                 
4 Although the World Meteorological Organization has a recommended set of metrics for forecast 
verification, these have not been applied consistently by modeling and forecast centers. In addition, the 
WMO estimates of forecast quality may be relevant to the climate prediction community, but may not 
relate directly to the types of information a decision-maker might need, such as the occurrence of 
anomalous temperature or precipitation at a more local or regional level, or  the occurrence of an extreme 
event (e.g. heat wave, flood). 
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BOX 1.1 

STATEMENT OF TASK 
 

This study will review the current state of knowledge about estimates of predictability of the 
climate system on intraseasonal to interannual timescales, assess in what ways current estimates 
are deficient, and recommend ways to improve upon the current predictability estimates. The 
study will also recommend research and model development foci and efforts that will be most 
beneficial in narrowing the gap between the current skill of predictions and estimated 
predictability limits. The review of predictability estimates to be addressed will include oceanic 
and atmospheric variables such as sea surface temperature, sub-surface heat content, surface 
temperature, precipitation, and soil moisture, as well as indices like Nino3.4 sea surface 
temperatures or the phases of the Madden-Julian Oscillation. 
 
Specifically, the study committee will: 
 
1. Review current understanding of climate predictability on intraseasonal to interannual time 
scales, including sources of predictability, the methodologies used to estimate predictability, 
current estimates of predictability, and how these estimates have evolved over time; 
 
2. Describe how improvements in modeling, observational capabilities, and other technological 
improvements (e.g., analysis, development of ensemble prediction systems, data assimilation 
systems, computing capabilities) have led to changes in our understanding and estimates of 
predictability; 
 
3. Identify any key deficiencies and gaps remaining in our understanding of climate 
predictability on intraseasonal to interannual timescales, and recommend research priorities to 
address these gaps; 
 
4. Assess the performance of current prediction systems in relation to the estimated predictability 
of the climate system on intraseasonal to interannual timescales, and recommend strategies 
(e.g.,observations, model improvements, and research priorities) to narrow gaps that exist 
between current predictive capabilities and estimated limits of predictability; and 
 
5. Recommend strategies and best practices that could be used to quantitatively assess 
improvements in both predictability estimates and prediction skill over time. 
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FIGURE 1.1  Time series of Mean Absolute Error (MAE) (thicker line with symbols) for the first 
three months of NINO3.4 predictions starting 1st February each year. Also shown (thin line, no 
symbols) is what is referred to as the Best Absolute Error (BAE), which is defined at each lead time 
as either zero (if the observations lie within the predicted range) or the distance between the observed 
value and the closest ensemble member, and then averaged over lead times. For a perfect forecasting 
system with a modest ensemble size, the BAE would be mostly zero, with occasional small positive 
values. The step change in skill after 1993 is evident.  SOURCE: Stockdale et al. (2010), Fig 7a.  
 
 

ISI PREDICTABILITY: THE EXAMPLE OF EL NIÑO-SOUTHERN OSCILLATION 
 
The El Niño-Southern Oscillation (ENSO) serves as a prime example of a process that 

contributes to forecasts on intraseasonal to interannual (ISI) timescales, which extend from 
roughly two weeks to several years (see Box 1.2).  Figure 1.2 shows the SST anomalies 
associated with one of the largest El Niño or warm ENSO events observed during the twentieth 
century.  These anomalies tend to be at a maximum during the Northern Hemisphere winter and 
can persist on the order of months to a year.  Although these anomalies are strongest in the 
equatorial Pacific Ocean, they affect winter temperature and precipitation globally, as shown in 
Figure 1.3.  Current ISI forecast systems, which draw upon observations of the atmosphere and 
ocean as well as the physical and statistical relationships that describe the coupling between 
them, can often provide accurate predictions of the SST anomalies associated with ENSO. Figure 
1.4 shows the predictions from a number of dynamical and statistical models for the SST 
anomaly in the equatorial Pacific several months in advance.  Although the predictions track the 
behavior of observed SST anomalies relatively well, the spread among the models is substantial, 
sometimes even differing in the sign of the SST anomaly.   
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BOX 1.2 

GENERAL TERMINOLOGY 
 
Intraseasonal to interannual timescale (ISI)—roughly, two weeks to several years; the report 
focuses on predictions of the climate system on this timescale and the physical processes that are 
used to make these predictions. 
 
Skill—the statistical evaluation of accuracy.  Skill is most often determined by comparison of 
the disseminated forecast with a reference forecast, such as persistence, climatology, or objective 
guidance.  Skill estimates can encompass deterministic estimates of skill, which are related to 
accuracy, or probabilistic estimates of skill, which are related to frequency of occurrence of 
specific events or thresholds.  Skill is expressed quantitatively in terms of a specific metric. 
 
Quality—the broad assessment of forecast performance encompassing a range of metrics, 
presumably related to the fidelity of physical processes (see also Kirtman and Pirani, 2008; 
Gottschalck et al. 2010). 
 
Prediction—information on future climate (deterministic or probabilistic) from a specific tool 
(statistical or dynamical). 
 
Forecast—issued guidance on future climate, which may take the form of quantitative outcomes, 
maps, and/or text.  A forecast is usually (though not always) based on a “forecast system” that 
incorporates several prediction inputs or, at least, is based on the interpretation of an individual 
prediction input against past experience. 
 
Model validation—comparison between observed and model-simulated climate. This may 
consider characteristics of climatology, variability or specific model processes.  
 
Forecast verification—comparison between observations and forecasts over a specific time 
period, which typically involves more than one quantitative metric of skill. 
 
Ensemble—a set of dynamical model runs from a single model, or from multiple models, that 
can be used to make a forecast.  Within a single model, each model run differs from other 
members of the ensemble by a small perturbation in the initial state. For multiple models, it is 
assumed that the models differ in their physics and/or their parameterizations of sub-grid scale 
processes. 
  
Note: these definitions are generally consistent with those appearing in the American 
Meteorological Society’s Glossary of Meteorology (http://amsglossary.allenpress.com/glossary); 
in some cases, detail has been added to clarify usage in this report.   
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FIGURE 1.2  Sea surface temperature (SST) anomalies in the equatorial Pacific Ocean for a 
period during Fall 1997.  This pattern is characteristic of a large amplitude El Niño event.  
SOURCE: CPC/NCEP/NOAA. 
 
 
 
 

 
 

FIGURE 1.3  Patterns of anomalous temperature and precipitation during an El Niño episode for 
the Northern Hemisphere winter. SOURCE: Adapted from CPC/NCEP/NOAA. 

Wet and Cold
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FIGURE 1.4  Predictions from various statistical (colored circles) and dynamical (colored 
diamonds) models along with observations (black circles) for SST anomalies in the equatorial 
Pacific Ocean.  Many of the model predictions track the evolution of the anomalies, but the 
spread among the models is still rather large.  The starting points of the models vary, and each 
prediction extends for approximately 5 months, since the predictions tend to diverge significantly 
after this period. SOURCE: International Research Institute for Climate and Society (IRI). 
 

There is significant potential for societal benefit from improvements in ISI prediction 
quality and the provision of ISI forecasts.  Many management decisions regarding water 
supplies, energy production, transportation, agriculture, forestry, and fisheries are made routinely 
on sub-seasonal, seasonal, or annual schedules.  For example, during an El Niño winter, coastal 
areas in California may experience a heightened risk of flooding caused by an increase in 
precipitation as well as sea level height, while mountainous areas in the Pacific Northwest of the 
United States may experience less snowfall, reducing subsequent water availability.  Thus, 
knowledge of the climate system at ISI timescales can be a useful input to making resource 
management and planning decisions.   

Expanding our knowledge of processes affecting the climate on ISI timescales is an 
important priority.  Many such processes have been identified (e.g., the Madden-Julian 
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Oscillation [MJO] and variability related to monsoonal circulations), but are not completely 
understood.  In addition, ISI variability can be observed at a relatively high frequency (multiple 
times per year) when compared to longer-term phenomena (e.g., decadal or multi-decadal 
oscillations such as the Pacific Decadal Oscillation), providing researchers with a relatively 
greater number of “realizations” to exploit within the observational record.  
 

 
ORGANIZATION OF THIS REPORT 

 
 The remainder of this report is organized into five chapters: 
 
Chapter 2 reviews the concept of predictability, starting with an initial review of the historical 
background for climate prediction.  Lorenz’s work on weather prediction in the 1960s and 1970s 
is a foundation for present efforts; work in the 1980s extended prediction timescales by 
exploiting ENSO variability in the tropical Pacific and its associated teleconnections.  Chapter 2 
also introduces the view that a meaningful definition associates predictability with sources of 
variability, such as: 1) the inertia, or memory, of that state of the environment; 2) the patterns of 
interaction or coupling between variables, which include “teleconnections”; and 3) the response 
to external forcing.  Various processes in the atmosphere, ocean, and land offer such sources of 
predictability.  However, many gaps remain in our understanding of these processes.  Chapter 2 
also introduces the reader to the methodologies used to quantitatively estimate prediction skill 
and discusses model validation and forecast verification.  Appendix A provides more technical 
detail about statistical methods. 
  
Chapter 3 presents the reader with an introductory review of ISI forecasting followed by the 
committee’s understanding of its critical components:  observations, statistical models, 
dynamical models, and data assimilation.  The processes for making and disseminating forecasts 
are also discussed, as well as their use by decision makers.  It closes with the committee’s 
summary of the potential improvements to current ISI forecast systems. 
 
Chapter 4 uses three case studies to amplify and illustrate the state of and challenges facing 
efforts to improve ISI prediction.  The three examples are ENSO, MJO, and soil moisture.   
 
Chapter 5 defines the “Best Practices” that could be implemented to improve ISI predictions.  
This section also discusses some of the synthesizing issues given the content of the preceding 
chapters, exploring how the suggested activities could improve forecast quality, lead to more 
effective use of observations, and relate to the concept of “seamless” forecasting.  In addition, 
realistic expectations for the speed and extent of improvements are discussed.  
 
Chapter 6 presents the committee’s recommendations and some remarks on their 
implementation. 
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2 
Climate Prediction 

  
 

This part of the report begins by reviewing the concept of predictability, starting with a 
summary of the historical background for climate prediction.  Lorenz’s work on weather 
prediction in the 1960s and 1970s is a foundation for present efforts.  Progress in the 1980s 
extended prediction timescales, exploiting improved observational awareness of ENSO 
variability in the tropical Pacific and its associated teleconnections.  Future improvements in 
prediction quality depend upon the ability to identify and understand patterns of variability and 
specific processes that operate on ISI timescales.  Various processes in the atmosphere, ocean, 
and land offer sources of predictability; several are introduced in the following sections.  Gaps in 
our present understanding of predictability are summarized to lay the foundation for discussion 
later in the report on how the future improvements are likely to be realized.  In going forward, it 
will be necessary to assess the incremental skill gained from new sources of predictability.  The 
methodologies to be used to quantitatively estimate prediction skill, validate models, and verify 
forecasts are discussed. 

 
THE CONCEPT OF PREDICTABILITY 

 
 Lorenz in 1969 defined predictability as “a limit to the accuracy with which forecasting is 
possible” (Lorenz, 1969a).  He later refined his view, providing two definitions of predictability 
(Lorenz, 2006):  “intrinsic predictability—the extent to which the prediction is possible if an 
optimum procedure is used” and “practical predictability—the extent to which we ourselves are 
able to predict by the best-known procedures, either currently or in the foreseeable future.”  The 
forecasting that interested Lorenz and others during the 1960s and 1970s, which focused on 
weather and the state of the mid-latitude troposphere, provided much of the framework regarding 
forecasting and predictability that remains applicable to longer-range forecasts of the climate 
system and is reviewed here. 
. 
 

Atmospheric Predictability 
 
 Lorenz noted that practical predictability was a function of: (1) the physical system under 
investigation, (2) the available observations, and (3) the dynamical prediction models used to 
simulate the system.  He noted in 2006 that the ability to predict could be limited by the lack of 
observations of the system and by the dynamical models’ shortcomings in their forward 
extrapolations.  While estimates of the predictability of day-to-day weather have been made by 
investigating the physical system, analyzing observations, and experimenting with models (Table 
2.1), no single approach provides a definitive and quantitative estimate of predictability. 
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TABLE 2.1 Historical methods for evaluating predictability and their advantages and 
disadvantages. 

Method and 
References Description Analysis 

Physical System:  
Analytic closure  
(Leith, 1971) 

Assuming that the atmosphere is 
governed by the laws of two-
dimensional turbulence, a 
predictability limit can be estimated 
from the rate of error growth implied 
by the energy spectrum.  
 

• Estimates are rough due to 
numerous assumptions. 

• Assumptions are stringent (e.g., 
atmospheric flow is non-
divergent and moist processes 
are not important for error). 

• Difficult to extend to other 
aspects of real atmosphere. 

Model: 
(Lorenz, 1965; 
Tribbia and 
Baumhefner, 2004; 
Buizza, 1997; 
Kalnay, 2003) 

Using a dynamical model, 
experiments are designed to answer: 
How long is it expected to take for 
two random draws from the analysis 
distribution for this model and 
observing system to become 
practically indistinguishable from 
two random draws from the model’s 
climatological distribution?  
 

• Predictability results are highly 
dependent on the quality of the 
model being used. 

• Predictability is a function of the 
uncertainty in analyses used as 
model initial conditions. 

 

Observations: 
Observed Analogs  
(Lorenz, 1969a; 
Van den Dool, 
1994; Van den 
Dool et al., 2003) 

The observed divergence in time of 
analogs (i.e., similar observed 
atmospheric states) provides an 
estimate of forecast divergence. 

• Difficult to identify analogs and 
extrapolate the results to real 
atmosphere.  Close analogs are 
not expected without a much 
longer observational record. 

 
The studies listed in Table 2.1 demonstrate that for practical purposes (i.e., using available 
atmospheric observations and dynamical models), the limit for making skillful forecasts of mid-
latitude weather systems is estimated to be approximately two weeks5, largely due to the 
sensitivity of forecasts to the atmospheric initial conditions (see Box 2.1)6.  However, their focus 
on weather and the state of the atmosphere excludes processes that are valuable for climate 
prediction.  For instance, many factors external to the atmosphere were ignored, such as 
incoming solar radiation and the state of the ocean, land, and cryosphere.  Single events, such as 
a volcanic eruption, that might influence predictability were not considered; nor were long-term 
trends in the climate system, such as global warming.  In addition, the models were unable to 
replicate many features internal to the atmosphere, including tropical cyclones, the Quasi-
Biennial Oscillation (QBO), the Madden Julian Oscillation (MJO), atmospheric tides, and low 
frequency atmospheric patterns of variability like the Arctic and Antarctic Oscillations.  These 
additional features are important for the impacts that they may have on the estimates of weather 
predictability, as well as for their influence on predictability on longer climate timescales. 

                                                 5 The limit also depends on the quantitative skill metric being used. 
6 Model error also contributes to errors in weather prediction (e.g., Orrell et al., 2001).  
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BOX 2.1  
WEATHER AND CLIMATE FORECASTS AND  
THE IMPORTANCE OF INITIAL CONDITIONS 

 
 Forecasts are computed as “initial value” problems: they require realistic models and 
accurate initial conditions of the system being simulated in order to generate accurate forecasts. 
Lorenz (1965) showed that even with a perfect model and essentially perfect initial conditions, 
the fact that the atmosphere is chaotic7 causes forecasts to lose all predictive information after a 
finite time. He estimated the “limit of predictability” for weather as about two weeks, an estimate 
that still stands: it is generally considered not possible to make detailed weather predictions 
beyond two weeks based on atmospheric initialization alone.  Lorenz’s discovery was initially 
only of academic interest since, at that time, there was little quality in operational forecasts 
beyond two days, but in recent decades forecast quality has improved, especially since the 
introduction of ensemble forecasting.  Useful forecasts now extend to the range of 5 to 10 days 
(see Figure 2.1).  

 
 

FIGURE 2.1.  Evolution of ECMWF forecast skill for varying lead times (3 days in blue; 5 days 
in red; 7 days in green; 10 days in yellow) as measured by 500-hPa height anomaly correlation.  
Top line corresponds to the Northern Hemisphere; bottom line corresponds to the Southern 
hemisphere.  Large improvements have been made, including a reduction in the gap in accuracy 
between the hemispheres.  SOURCE: courtesy of ECMWF, adapted from Simmons and 
Hollingsworth (2002). 
 

                                                 7 Here, “chaotic” refers to a system that contains instabilities that grow with time. 
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 The initial conditions for atmospheric forecasts are obtained through data assimilation, a 
way of combining short-range forecasts with observations to obtain an optimal estimate of the 
state of the atmosphere.  Figure 2.2 shows the three factors on which the quality of the initial 
conditions depends: (1) good observations with good coverage, (2) a good model able to 
accurately reproduce the evolution of the atmosphere, and (3) an analysis scheme able to 
optimally combine the observations and the forecasts.  The impressive improvement in 500-hPa 
geopotential height anomaly correlation in recent decades (Figure 2.1) has been due to 
improvements made in each of these three components.  Since atmospheric predictability is 
highly dependent on the stability of the evolving atmosphere, ensemble forecasts made from 
slightly perturbed initial conditions have given forecasters an additional tool to estimate the 
reliability of the forecast.  In other words, a minor error in an observation or in the model can 
lead to an abrupt loss of forecast quality if the atmospheric conditions are unstable. 
 For climate prediction on ISI timescales, the initial conditions involve phenomena with 
much longer timescales than the dominant atmospheric instabilities.  For example, the SST 
anomalies associated with an El Niño event need to be known when establishing the initial 
conditions.  Essentially, the initial conditions extend beyond the atmosphere to include details on 
the states of the ocean and land surface.  From these long-lived phenomena, predictability of 
atmospheric anomalies can theoretically be extended beyond approximately two weeks to at least 
a few seasons. 

 
FIGURE 2.2  Schematic for data assimilation for an analysis cycle.  The diagram shows the three 
factors that affect the initial conditions: observations, a model, and an analysis scheme. 
 
 

Predictability of the Ocean and Atmosphere 
  

 As better observations led to an improved understanding of the climate system in the 
1970s and 1980s, predictions of the atmosphere beyond the limits of the “classical” predictability 
proliferated.  Statistical forecast systems had already demonstrated that predictions for time 
averages of some mid-latitude atmospheric quantities could be made at well past two weeks 
(Charney and Shukla, 1981).  Observations of ENSO made it clear that some aspects of the 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

Climate Prediction  25 

tropical atmosphere could be predicted at longer lead-times as well.  Observational, theoretical, 
and modeling studies (Horel and Wallace, 1981; Sarachik and Cane, 2010) demonstrated that 
there were relationships between variability observed in the tropical oceans and the variability of 
the extratropical atmosphere.  It became clear that longer-range forecasts of atmospheric 
quantities could be made using predictions of the coupled ocean-atmosphere system.  
 Although operational, extended forecasts continued to focus on surface temperature and 
precipitation over continents, the atmospheric initial conditions were no longer considered 
important for making these forecasts; atmospheric ISI prediction was now considered a boundary 
value problem (Lorenz, 1975; Chen and Van den Dool, 1997; Shukla, 1998; Chu, 1999).  
Boundary forcing, initially from the ocean but later from the land and cryosphere (Brankovic et 
al., 1994), was used as the source of predictive information.  This was appropriate because 
coupled models of the atmosphere, ocean, and land surface were still in their infancy and were 
not competitive with statistical prediction models (Anderson et al., 1999). 

Given this context, researchers asked: if there exists a perfect prediction of ocean or land 
conditions, how well could the state of the mid-latitude atmosphere be predicted (Yang et al., 
2004)?  This question has been addressed observationally by estimating the signal-to-noise ratio.  
In this case the portion of the climate variance related to the lower boundary forcing is the signal, 
the portion of the climate variance related to atmospheric internal dynamics is the noise, and the 
ratio of the two represents one possible measure of predictability (e.g., Kang and Shukla, 2005).  
Such studies can lead to overly optimistic estimates of predictability because they assume that 
the boundary conditions are predicted perfectly. 

There is an additional problem with this boundary-forced approach.  These estimates 
assume that feedbacks between the atmosphere and the ocean do not contribute to the 
predictability.  However, coupling between the atmosphere and the ocean can also be important 
in the evolution of SST anomalies (Wang et al., 2004; Zheng et al., 2004; Wu and Kirtman, 
2005; Wang et al,. 2005; Kumar et al., 2005; Fu et al., 2003, 2006; Woolnough et al., 2007).  
Because the boundary-forced approach ignores this atmosphere-ocean co-variability (or any 
other climate system component couplings), these boundary-forced predictability estimates are 
of limited use. 
 
 

Climate System Predictability 
 

The techniques for estimating predictability shown in Table 2.1 can be applied to the 
coupled prediction problem (e.g., Goswami and Shukla, 1989; Kirtman and Schopf, 1998).  
However, each method is still subject to limitations similar to those mentioned in Table 2.1.  
Given the complexity of the climate system, estimates based on analytical closure are somewhat 
intractable (i.e., how can error growth rates from a simple system of equations relate to the real 
climate system?); approaches based on observations are limited by the relatively short length of 
the observational record, combined with the difficulty in identifying controlled analogs for a 
particular state of the climate.  Non-stationarity in the climate system further reduces the chance 
that observed analogs would become useful in the foreseeable future, if ever.  Model-based 
estimates are thus the most practical, but are still limited by the ability to measure the initial 
conditions for the climate and the mathematical representation of the physical processes.  

As discussed in Chapter 1, most efforts to estimate prediction quality (or hindcast quality) 
are relatively recent, and involve analysis of numerous model-generated predictions for a similar 
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time period (Waliser, 2005; Waliser, 2006; Woolnaugh et al. 2007; Pegion and Kirtman, 2008; 
Kirtman and Pirani, 2008; Gottschalck et al. 2010).  For example, Kirtman and Pirani (2008) 
reported on the WCRP Seasonal Prediction Workshop in Barcelona where the participants 
discussed validating and assessing the quality of seasonal predictions based on a number of 
international research projects on dynamical seasonal prediction (e.g., SMIP2/HFP, DEMETER, 
ENSEMBLES, APCC). This collection of international projects includes a variety of different 
experimental designs (i.e., coupled vs. uncoupled), different forecast periods, initial condition 
start dates, and levels of data availability. Despite these differences, there was an attempt to 
arrive at consensus regarding the current status of prediction quality. Several different 
deterministic and probabilistic skill metrics were proposed, and it was noted that no single metric 
is sufficiently comprehensive. This is particularly true in cases where forecasts are used for 
decision support. Nevertheless, the workshop report includes an evaluation of multi-model 
prediction for Nino3.4 SSTA, 2m-temperature and precipitation in 21 standard land regions 
(Giorgi and Francisco, 2000). While it was recognized that the various skill metrics used were 
incomplete8 and that there were difficulties related to the different experimental designs and 
protocols, the consensus was clear that multi-model skill scores were on average superior to any 
individual model (Kirtman and Pirani, 2008).  Systematic efforts along the above lines for the 
intraseaosnal time scale have only recently begun with the development of an MJO forecast 
metric and a common approach to its application amongst a number of international forecast 
centers (Gottschalck et al. 2010) as well as the establishment of a multi-model MJO hindcast 
experiment (see www.ucar.edu/yotc/iso.html). 

  
 

SOURCES OF PREDICTABILITY 
 

Overview of Physical Foundations 
  

 Climate reflects a complex combination of behaviors of many interconnected physical 
and (often chaotic) dynamical processes operating at a variety of time scales in the atmosphere, 
ocean, and land.  Its complexity is manifested in the varied forms of weather and climate 
variability and phenomena, and in turn, in their fundamental (if unmeasurable) limits of 
predictability, as defined above.  Yet, embedded in the climate system are sources of 
predictability that can be utilized. Three categories can be used to characterize these sources of 
weather and climate predictability: inertia, patterns of variability, and external forcing.  The 
actual predictability associated with an individual phenomenon typically involves interaction 
among these categories. 
 The first category is the “inertia” or “memory” of a climate variable when it is considered 
as a quantity stored in some reservoir of nonzero capacity, with fluxes (physical climate 
processes) that increase or decrease the amount of the variable within the reservoir over time, 
e.g., soil moisture near the land-atmosphere interface.  Taking the top meter of soil as a control 
volume and the moisture within that volume as the climate variable of interest, the soil moisture 
increases with water infiltrated from the surface (rainfall or snowmelt), decreases with 
evaporation or transpiration, and changes further via within-soil fluxes of moisture through the 
sides and bottom of the volume.  For a given soil moisture anomaly, the lifetime of the anomaly 
                                                 8 The particular metrics used to evaluate prediction quality were the multi-model Brier Skill Score for 2m-
temperature and rainfall and the Mean Square Skill Score for the Nino3.4 SSTA. 
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(and thus our ability to predict soil moisture with time) will depend on these fluxes relative to the 
size of the control volume.  Soil moisture anomalies at meter depth have inherent time scales of 
weeks to months.  As panel (a) of Figure 2.3 shows, soil moisture anomalies exist considerably 
longer than the precipitation events that cause them. 
 Arguably, many variables related to the thermodynamic state of the climate system have 
some inertial memory that can be a source of predictability.  Surface air temperature in a small 
regional control volume, for example, is a source of predictability that is very short given the 
efficiency of the processes (winds, radiation, surface turbulent fluxes, etc.) that affect it. If the air 
temperature at a given location is known at noon, its value at 12:05 PM that day can be predicted 
with a very high degree of certainty, whereas its predicted value days later is much more 
uncertain.  In stark contrast, the inertial memory of ocean heat content can extend out to seasons 
and even years, depending on averaging depth. Examples of other variables with long memories 
include snowpack and trace gases (e.g., methane) stored in the soil or the ocean. 
 The second category involves patterns of variability—not variables describing the state of 
the climate and their underlying inertia, but rather interactions (e.g., feedbacks) between 
variables in coupled systems.  These modes of variability are typically composed of 
amplification and decay mechanisms that result in dynamically growing and receding (and in 
some cases oscillating) patterns with definable and predictable characteristics and lifetimes. With 
modes of variability, predictability does not result from the decay of an initial anomaly 
associated with fluxes into and out of a reservoir, as in the first category, but rather with the 
prediction of the next stage(s) in the life cycle of the dynamic mode based on its current state and 
the equations or empirical relationships that determine its subsequent evolution.  In many 
examples related to inertia or memory within the climate system, the atmosphere plays a 
“passive” and dissipative role in the evolution of the underlying anomaly.  On the other hand, for 
the patterns of variability or feedbacks discussed here, the atmosphere plays a more active role in 
amplifying or maintaining an anomaly associated with processes occurring in the ocean or on 
land.  

“Teleconnections” is a term used to describe certain patterns of variability, especially 
when they act over relatively large geographic distances.  Teleconnections illustrate how 
interaction among the atmosphere, ocean, and land surface can “transmit” predictability in one 
region to another remote region. For example, during ENSO events, features of the planetary 
scale circulation (e.g., the strength and location of the mid-latitude jet stream) interact with 
anomalous convection in the tropical Pacific.  These interactions can lead to anomalous 
temperature and precipitation patterns across the globe (panel b of figure 2.3). Thus, predictions 
of tropical Pacific sea surface temperature due to ENSO can be exploited to predict air 
temperature anomalies in some continental regions on the time scales of months to seasons.  For 
air temperature, this teleconnection pattern offers enhanced predictability compared to memory 
alone, which would only be useful for minutes to hours.  It should be noted that the predictability 
of teleconnection responses (in the above example, air temperature in a location outside of the 
tropical Pacific) will be lower than that of the source (in the above example, tropical Pacific 
SST) because of dynamical chaos that limits the transmission of predictability. 

The third category involves the response of climatic variables to external forcing, and it 
includes some obvious examples. Naturally, many Earth system variables respond in very 
predictable ways to diurnal and annual cycles of solar forcing and even to the much longer cycles 
associated with orbital variations.  Other examples of external forcing variations that can provide 
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predictability include human impacts—long-term changes in atmospheric aerosols, greenhouse 
gas concentrations, and land use change. 

 

 
FIGURE 2.3  (a)  Example of inertial memory.  A positive soil moisture anomaly at the 
Atmospheric Radiation Measurement/Cloud and Radiation Testbed (ARM/CART) site in 
Oklahoma decreases with a time scale much longer than the atmospheric events that caused it. 
SOURCE: Greg Walker, personal communication.  Soil moisture time scales measured at other 
sites are even longer than this (Vinnikov and Yeserkepova, 1991).  (b) Example of 
teleconnections.  Map of El Niño impacts on global climate, for December–February. SOURCE: 
Adapted from CPC/NCEP/NOAA (c) Example of external forcing.  Global mean temperature 
anomaly prior (negative x-axis values) and following (positive x-axis values) volcanic eruptions, 
averaged for 6 events.  Substantial cooling is observed for nearly 2 years following the date of 
eruption.  The dark line has the ENSO events removed; the light line does not.  SOURCE:  
Robock and Mao (1995). 
 
 

Examples of Predictability Sources 
 
 Figure 2.4 provides a quick glimpse of various predictability sources in terms of their 
inherent time scales.  This view, based on time scale, is an alternative or complement to the 
three-category framework (inertia, patterns of variability, and external forcing).  Provided in the 
present section is a broad overview of predictability sources relevant to ISI time scales.  Some of 
the examples will be discussed more comprehensively in later chapters. 
 It is important to realize that the timescales associated with sources of predictability often 
arise from a combination of inertia and feedback processes.  Also, it should be noted that the  
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FIGURE 2.4  Processes that act as sources of ISI climate predictability extend over a wide range 
of timescales, and involve interactions among the atmosphere, ocean, and land.  CCEW: 
convectively coupled equatorial waves (in the atmosphere); TIW: tropical instability wave (in the 
ocean); MJO/MISV: Madden-Julian Oscillation/Monsoon intraseasonal variability; NAM: 
Northern Hemisphere annular mode; SAM: Southern Hemisphere annular mode; AO: Arctic 
oscillation; NAO: North Atlantic oscillation; QBO: quasi-biennial oscillation, IOD/ZM: Indian 
Ocean dipole/zonal mode; AMOC: Atlantic meridional overturning circulation. For the y-axis, 
“A” indicates “atmosphere;” “L” indicates “land;” “I” indicates “ice;” and, “O” indicates 
“ocean.”  
 
 
timescales in Figure 2.4 indicate the timescale of the variability associated with a particular 
process.  This is distinct from the timescale associated with a prediction.  For example, ENSO 
exhibits variability on the scale of years; however, information about the state of ENSO can be 
useful for making ISI predictions on weekly, monthly, and seasonal time scales. 

As discussed in Chapter 1 (see Committee Approach to Predictability), it can be difficult 
to quantify the intrinsic predictability associated with any of the individual processes depicted in 
Figure 2.4 (i.e., for what lead-time is an ENSO prediction viable?  And to what extent would that 
prediction contribute to skill for predicting temperature or precipitation in a particular region?).  
As mentioned earlier (see Climate System Predictability), prediction experiments form the 
foundation of our understanding.  However, these experiments are rarely definitive in 
quantifying such limits of predictability.  For example, for ENSO, there are three competing 
theories (inherently nonlinear; periodic, forced by weather noise; and the damped oscillator) that 
underlie various models of ENSO, each with its own estimate of predictability (see Kirtman et 
al., 2005 for a detailed discussion).  At this time we are unable to resolve which theory is correct 
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since all yield results that are arguably “consistent” with observational estimates.  To further 
complicate the understanding of the limits of predictability for ENSO, there are important 
interactions with other sources of predictability that may enhance or inhibit the predictability 
associated with ENSO (see Chapter 4).  ENSO is just one example of how understanding what 
“sets” the predictability associated with a particular process is a critical challenge for the ISI 
prediction community.  The challenge of improving forecast quality necessitates enhancing the 
individual building blocks (see Chapter 3) that make up our predictions systems, but it also 
requires a deeper understanding of the physical mechanisms and processes that are the sources of 
predictability. 
 
 
Inertia 
 

Upper ocean heat content 
On seasonal-to-interannual time scales upper ocean heat content is a known source of 

predictability.  The ocean can store a tremendous amount of heat.  The heat capacity of 1 m3 of 
seawater is 4.2 x 106 joules m-3 K-1 or 3,500 times that of air and 1.8 times that of granite.  
Sunlight penetrates the upper ocean, and much of the energy associated with sunlight can be 
absorbed directly by the top few meters of the ocean. Mixing processes further distribute heat 
through the surface mixed layer, which can be tens to hundreds of meters thick.  As Gill (1982) 
points out, with the difference in heat capacity and density, the upper 2.5 m of the ocean can, 
when cooling 1°C, heat the entire column of air above it that same 1°C.  The ocean can also 
transport warm water from one location to another, so that warm tropical water is carried by the 
Gulf Stream off New England, where in winter during a cold-air outbreak, the ocean can heat the 
atmosphere at up to 1200 W m-2, a heating rate not that different from the solar constant.  Stewart 
(2005) shows that a 100 m deep ocean mixed layer heated 10°C seasonally stores 100 times 
more heat than 1 m thick layer of rock heated that same 10°C; as a result the release of the heat 
from the ocean mixed layer can have a large impact on the atmosphere.  Thus, the atmosphere 
acts as a “receiver” of any anomalies that have been stored in the ocean, and predictions of the 
evolution of air temperature over the ocean can be improved by consideration of the ocean state.   
 

Soil moisture 
 Soil moisture memory spans intraseasonal time scales.  Memory in soil moisture is 
translated to the atmosphere through the impact of soil moisture on the surface energy budget, 
mainly through its impact on evaporation.  Soil moisture initialization in forecast systems is 
known to affect the evolution of forecasted precipitation and air temperature in certain areas 
during certain times of the year on intraseasonal time scales (e.g., Koster et al., 2010).  Model 
studies (Fischer et al., 2007) suggest that the European heat wave of summer 2003 was 
exacerbated by dry soil moisture anomalies in the previous spring. 
 

Snow cover  
 Snow acts to raise surface albedo and decouple the atmosphere from warmer underlying 
soil.  Large snowpack anomalies during winter also imply large surface runoff and soil moisture 
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anomalies during and following the snowmelt season, anomalies that are of direct relevance to 
water resources management and that in turn could feed back on the atmosphere, potentially 
providing some predictability at the seasonal time scale.  The impact of October Eurasian snow 
cover on atmospheric dynamics may improve the prediction quality of northern hemisphere 
wintertime temperature forecasts (Cohen and Fletcher, 2007). The autumn Siberian snow cover 
anomalies can be used for prediction of the East Asian winter monsoon strength (Jhun and Lee, 
2004; Wang et al., 2009).  
 

Vegetation 
 Vegetation structure and health respond slowly to climate anomalies, and anomalous 
vegetation properties may persist for some time (months to perhaps years) after the long-term 
climate anomaly that spawned them subsides.  Vegetation properties such as species type, 
fractional cover, and leaf area index help control evaporation, radiation exchange, and 
momentum exchange at the land surface; thus, long-term memory in vegetation anomalies could 
be translated into the larger Earth system (e.g. Zeng et al., 1999). 
 

Water table variations   
 Water table properties vary on much longer timescales (years or more for deep water 
tables) than surface soil moisture.  Some useful predictability may stem from these variations, 
though the investigation of the connection of these variations to the overall climate system is still 
in its infancy, in part due to a paucity of relevant observations in time and space. 
 

Land heat content 
 Thermal energy stored in land is released by molecular diffusion and thus over all time 
scales, but with a rate of release that decreases with the square root of the time scale.  In practice, 
there is strong diurnal storage (up to 100 W m-2) of heat energy and a still significant amount 
over the annual cycle (up to 5 W m-2).  This is particularly strong in relatively unvegetated 
regions where solar radiation is absorbed mostly by the soil, since vegetation has much less 
thermal inertia, or in higher latitudes where soil water seasonally freezes.  
 

Polar sea ice 
Sea ice is an active component of the climate system and is highly coupled with the 

atmosphere and ocean at time scales ranging from synoptic to decadal. When large anomalies are 
established in sea ice, they tend to persist due to inertial memory and to positive feedback in the 
atmosphere-ocean-sea ice system. These characteristics suggest that some aspects of sea ice may 
be predictable on ISI seasonal time scales. In the Southern Hemisphere, sea ice concentration 
anomalies can be predicted statistically by a linear Markov model on seasonal time scales (Chen 
and Yuan, 2004). The best cross-validated skill is at the large climate action centers in the 
southeast Pacific and Weddell Sea, reaching 0.5 correlation with observed estimates even at 12-
month lead time, which is comparable to or even better than that for ENSO prediction. We have 
less understanding of how well sea ice impacts the predictability of the overlying atmosphere. 
 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

32 Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 
 

 

 
Patterns of Variability 
 

Different components of the climate system, each with their own inertial memory, 
interact with each other in complex ways.  The dynamics of the feedbacks and interactions can 
lead to the development of predictable modes, or patterns, of variability. 

It should be noted that the descriptions for the patterns of variability provided in the 
following subsections describe their “typical” behavior, focusing on commonalities among 
observed events and the mechanisms that drive the phenomena.  In reality, the manifestation or 
impact of a pattern may differ from these “typical” cases since the various patterns of variability 
can be affected by one another as well as by the unpredictable “noise” inherent to the climate 
system, especially in the atmosphere.  For example, not all ENSO events have the same features, 
and in some cases, these differences among events can be understood from interactions between 
ENSO and the MJO (see the MJO case study in Chapter 4).   
 

Low-frequency equatorial waves in the atmosphere and ocean   
 The equator provides an efficient wave guide by which tropical dynamical energy is 
organized, propagated, and dissipated.  In the atmosphere, equatorial Kelvin and Rossby waves 
and mixed Rossby-Gravity waves (Matsuno, 1966) are observed. Due to the moist and vertically 
unstable nature of the tropics, these low-frequency waves are often associated with convection 
and are referred to as convectively-coupled equatorial waves (CCEWs) (Wheeler and Kiladis, 
1999; Kiladis et al., 2009). The spatial scales of these disturbances can be quite large (on the 
order of thousands of kilometers), and their time scales for propagating across ocean basins can 
be of the order of days to weeks.  Figure 2.5 shows a time-longitude plot of equatorial outgoing 
longwave radiation (OLR) anomalies, produced following a wavenumber-frequency analysis.  
OLR is a good proxy for deep tropical convection, and the colors in Figure 2.5 show areas of 
enhanced (hot colors) or suppressed (cool colors) convection.  These patterns in OLR correspond 
to characteristic types of waves (green, blue, and black ovals), illustrating that variability in the 
tropical atmosphere is consistent with the simplified theory of Matsuno (Kiladis et al., 2009).  
Figure 2.5 also demonstrates the manner in which these waves are manifest in relation to the 
typical background variability. Although complicated by their coupling to atmospheric 
convection, the organization and propagation of these low-frequency waves provides an element 
of predictability for the tropical atmosphere and possibly the extra-tropics via teleconnections.   
 Analogous to the discussion of the atmosphere above, the equatorial ocean supports the 
presence of equatorial wave modes, such as the Kelvin, Rossby and mixed-Rossby gravity 
modes.  One simplifying aspect for their presence in the ocean is that, in contrast to the 
atmosphere, no convection or phase changes are involved.  Because the equivalent depth of the 
ocean is considerably smaller than that for the atmosphere, its propagation speeds are much 
slower, and thus the time scale (and the predictability that arises from it) is much longer (e.g., a 
Kelvin wave takes about 2–3 months to cross the Pacific Ocean).  These waves play a crucial 
role in the ocean thermocline adjustment and ENSO turnaround, as discussed below. 
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FIGURE 2.5  Some atmospheric waves offer an important source of predictability.  The time-
longitude diagram depicts the speed and direction of propagation that Kelvin waves (green 
ovals), Rossby waves (black ovals), and waves associated with the MJO (blue ovals) can exhibit 
in the tropics.  The dense shading, which often overlaps with the position of the ovals, 
corresponds to anomalies in outgoing longwave-radiation (OLR); positive OLR anomalies 
indicate clear skies and suppressed convection; negative OLR anomalies indicate enhanced 
convection.  SOURCE:  Adapted from Wheeler and Weickmann (2001). 
 

Madden-Julian Oscillation (MJO)   
 Another fundamental mode of tropical convectively-coupled wave-like variability is the 
Madden-Julian Oscillation (MJO; Madden and Julian, 1972, 1994).  MJOs operate on the 
planetary scale, with most of the convective disturbance and variations occurring in the Indo-
Pacific warm pool regions. The typical time scale of these quasi-periodic disturbances is of the 
order of 40–50 days.  They tend to propagate eastward in boreal winter and north and/or 
northeastward in boreal summer.  They strongly influence the onsets and breaks of the Australian 
and Asian monsoons and are sometimes referred to as monsoon intraseasonal variability (MISV) 
or oscillation (MISO).  As with the CCEWs mentioned above, they are thought to be a source of  
both local predictability and predictability in the extra-tropics.  The MJO and its associated 
predictability are discussed in more detail in Chapter 4 of this report.  Figure 2.6 illustrates 
composite MJO events for boreal summer (May–October).   
 

SST and mixed layer feedback on subseasonal time scales   
 The large/planetary spatial and subseasonal time scales of the CCEWs and MJO 
discussed above, along with the often strong impact of these phenomena on surface fluxes via 
wind speed and cloudiness, can result in significant modulation of the ocean surface mixed layer,  
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FIGURE 2.6 Characteristic rainfall patterns (mm per day) before, during, and following an MJO 
event during the boreal summer (May–October).  Dry anomalies are indicated by “cool” colors 
(green, blue, purple) and wet anomalies are indicated by “hot” colors (yellow, orange, red). 
SOURCE: Waliser et al. (2005). 
 
 
with variations in depth on the order of tens of meters and in temperature of the order of a 
degree.  This process can impart a feedback onto the atmospheric wave processes which 
influences their subsequent evolution (e.g. amplitude, propagation speed).   
 

Annular Modes (Northern or Southern, NAM or SAM) 
 The Annular Modes, also refereed to as the Arctic Oscillation (Figure 2.7) in the 
Northern Hemisphere, or the Antarctic Oscillation in the Southern Hemisphere, are dominant 
modes of variability outside the tropics. They are established on a weekly time scale due to 
atmospheric internal dynamics (such as mean flow-wave interaction or stratosphere-troposphere 
interaction).  They offer some predictability on seasonal time scales through longer-timescale 
persistence of stratospheric winds (Baldwin and Dunkerton, 1999).  The modes can influence 
surface temperature and precipitation, especially the frequency of extreme events (Thompson 
and Wallace, 2001).   
 The manifestation of the Arctic Oscillation in the Atlantic sector is commonly referred to 
at the North Atlantic Oscillation (NAO).  An index for the NAO is typically formed from the 
difference in sea-level pressure between the Azores and Iceland. High index values correspond to 
stronger westerly flow across the North Atlantic, an intensification and northward shift of the 
storm track (Rogers, 1990) and warmer and wetter winters in northern Europe (Hurrell 1995). 
Covarying with the NAO there is an associated tripole pattern of sea surface temperature 
anomalies (Deser and Blackmon 1993). 
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FIGURE 2.7  Characteristic pattern of anomalous sea level pressure (SLP; in hPa) associated 
with the positive polarity of the Arctic Oscillation (AO) in the winter. Blue indicates lower than 
normal SLP and red indicates higher than normal SLP; this phase of the AO exhibits an 
enhanced westerly jet over the Atlantic Ocean in the mid-latitudes. The North Atlantic 
Oscillation can be thought of as the portion of the AO pattern that resides in the Atlantic sector. 
SOURCE: Adapted from Thompson and Wallace (2000). 

 
 
The NAO is the single largest contributing pattern to European interannual variability and 

plays an important role in predictions of European winter climate.  However, the ability to 
predict the NAO on seasonal timescales is limited in current generation of models used for 
seasonal forecasting. There is some evidence that variability in the Atlantic Gulf Stream can 
influence the long-term variability of the NAO (Wu and Gordon, 2002).  In addition, there is 
evidence of forcing of the NAO by ENSO (Bronniman et al., 2007; Ineson and Scaife 2009) and 
the stratospheric Quasi-Biennial Oscillation (Boer and Hamilton 2008). 
 

Stratosphere-Troposphere Interaction, Quasi-Biennial Oscillation (QBO) 
 Since the stratosphere can interact with the troposphere, knowledge of the state of the 
stratosphere can serve almost as a boundary condition when attempting to simulate the 
troposphere.  The stratospheric circulation can be highly variable, with a time scale much longer 
than that of the troposphere. The variability of the stratospheric circulation can be characterized 
mainly by the strength of the polar vortex, or equivalently the high latitude westerly winds.  
Stratospheric variability peaks during Northern winter and Southern late spring. When the flow 
just above the tropopause is anomalous, the tropospheric flow tends to be disturbed in the same 
manner, with the anomalous tropospheric flow lasting up to about two months (Baldwin et al., 
2003a, 2003b). Generally, the surface pressure signature looks very much like the North Atlantic 
Oscillation or Northern Annular Mode. Surface temperature signals are also similar to those from 
the NAO and SAM and there are associated effects on extremes (Thompson et al., 2002). In 
sensitive areas such as Europe in winter, experiments suggest that the influence of stratospheric 
variability on land surface temperatures can exceed the local effect of sea surface temperature.   
 Sudden stratospheric warming events serve as an extreme example of how the 
stratosphere could serve as a source of predictability. During a sudden warming event the polar 
vortex abruptly (over the course of a few days) slows down, leading to an increase in polar 
stratospheric temperature of several tens of degrees Kelvin. Although attenuated, over the course 
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of the following weeks the warming signal migrates downward into the troposphere with signals 
that can be detected in the surface climate approximately a month following the warming event 
(Limpasuvan et al., 2004). 

Additionally, the Quasi-Biennial Oscillation (QBO) of the stratospheric circulation offers 
a source of predictability for the tropospheric climate.  The stratospheric QBO in the tropics 
arises from the interaction of the stratospheric mean flow with eddy fluxes of momentum carried 
upward by Rossby and gravity waves that are excited by tropical convection.  The result is an 
oscillation in the stratospheric zonal winds having a period of about 26 months.  While our 
weather and climate models do not often resolve or represent the QBO well, it is one of the more 
predictable features in the atmosphere, and it has been found to exhibit a signature in surface 
climate (Thompson et al., 2002).   
 

Tropical Instability Waves (TIWs) in the ocean  
 TIWs are most prevalent in the eastern Pacific Ocean and are evident in SST and other 
quantities such as ocean surface chlorophyll and even boundary-layer cloudiness, particularly 
just north of the equator.  They arise from shear-flow and baroclinic instabilities and result in 
westward propagating wave-like features having length scales on the order of 1000s of km and 
time scales of about 1–2 weeks.  There is evidence that they may affect the overlying 
atmosphere. (Hoffman et al., 2009).  That the strong SST gradients associated with the TIWs 
affect the surface winds has been documented by Chelton et al. (2001).  Song et al. (2009) 
suggest that atmospheric models should improve the realism of their coupling between the 
atmosphere and ocean mesoscale variability in SST in order to correctly capture small scale 
variability in the wind field.   

 

El Niño-Southern Oscillation (ENSO), involving subsurface ocean heat content   
 The evolution of ENSO can be predicted one to a few seasons in advance using coupled 
atmosphere-ocean models (e.g., Zebiak and Cane, 1987), and SST anomalies in the tropical 
Pacific Ocean can contribute to predictions of the global atmospheric circulation at seasonal 
leads (e.g., Shukla, 1998).  Accurate prediction of ENSO is a key objective and benchmark of 
many operational seasonal forecasting efforts, as discussed in more detail in Chapter 4. 

Rossby wave energy propagation in the atmosphere underlies important teleconnections 
involving ENSO, and can be understood by considering relatively basic climate dynamics.  
Rossby waves conserve absolute vorticity. Hence away from sources and sinks, north-south 
transport of the vorticity from the earth’s rotation is balanced by advective transport of wave 
disturbance vorticity. As a consequence, in the mid-latitudes where large scale winds are 
predominantly westerly, wavelike disturbances are possible in the wind, pressure, and 
temperature patterns, whereas in the tropics where easterly winds are dominant, forced 
disturbances remain localized.  These waves provide teleconnections between the tropics and the 
midlatitudes. 

The teleconnections associated with ENSO can be profoundly important because many 
populated areas would otherwise not be affected by this source of predictability.  Figure 2.3 
(panel b), for example, illustrates some of the teleconnections associated with the ENSO cycle.  
The positive phase of the ENSO cycle tends to promote warm conditions in the northeast United 
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States, even though this area is not involved in the dynamics underlying ENSO.  In essence, the 
northeast United States is a passive recipient of ENSO predictability through a global-scale 
teleconnection process.   

ENSO itself can be related to other patterns of variability.  For example, westerly wind 
bursts associated with the MJO may help to trigger ENSO events (see the ENSO case study in 
Chapter 4).  Also, Yuan (2004) describes a teleconnection process between ENSO and the 
Antarctic Dipole, a separate climate mode.  ENSO forcing triggers the Antarctic Dipole, with 
implications for sea ice prediction at seasonal timescales. 
 

Indian Ocean Dipole/Zonal Mode (IOD/IOZM)  
 A coupled mode of interannual variability has been found in the equatorial Indian Ocean 
in which the normally positive SST gradient is significantly weakened or reversed for a period 
on the order of a season (Saji et al., 1999; Webster et al., 1999).  It can result in significant 
regional climate impacts, such as in east Africa and southern Asia.  The independence of this 
mode and its connections to ENSO are still being investigated, but in any case the Indian Ocean 
Dipole/Zonal Mode (IOD/IOZM), like ENSO, appears to offer an intermittent source of 
interannual predictability. Similar to ENSO, the IOD/IOZM involves equatorial SST-wind-
thermocline/upwelling feedback (Bjerknes, 1969); however, in contrast to ENSO, it also involves 
off-equatorial, SST-convection-atmospheric Rossby wave interaction (Li et al., 2003; Wang et 
al., 2003). The latter is strongly regulated by seasonal reversal of the monsoon circulation, hence 
the IOD/IOZM lasts only a season or two. The off-equatorial, SST-convection-Rossby wave 
interaction can maintain cooling of western North Pacific SST and anomalous anticyclonic 
circulation during the decaying phase of ENSO, providing a source of predictability for the East 
Asian summer monsoon (Wang et al., 2000).   
 
 
External Forcing   
 

Greenhouse gases (CO2, etc.) 
 Greenhouse gases have a direct impact on the radiation balance of the atmosphere: 
increases in greenhouse gases warm the global climate.  The non-stationarity associated with this 
climate change is an important component of climate forecasts even on ISI timescales. For 
example, the NOAA Climate Prediction Center uses optimal climate normals and other empirical 
techniques to capture this non-stationarity in climate forecasts (Huang et al., 1996a; Livezey et 
al., 2007).  However, regional details of this climate change are difficult to model numerically 
due to the myriad important feedbacks that need to be taken into account.  These include 
feedbacks due to the enhancement of water vapor in the warming atmosphere and the associated 
changes in cloudiness and snow/ice amount, all of which can affect the radiation budget.  In 
addition, there are feedbacks from the carbon cycle itself (including the release of additional 
greenhouse gases in northern latitudes as permafrost melts), the ocean thermohaline circulation, 
changes in the biosphere, and so on.   
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Anthropogenic Aerosols  
 Atmospheric aerosols, which affect the radiation budget of the Earth, include major 
human-related components that change with the nature of human activities, and thus which may 
be predictable.  The human-related components include sulfate aerosols from fossil fuel 
combustion and organic aerosols from biomass burning and land use change. 
 The effect of changes in aerosols on precipitation at ISI timescales could be important.  
Bollasina and Nigam (2009) have shown that elevated aerosol concentrations over the Indian 
subcontinent can accompany periods of reduced cloudiness, increased downward shortwave 
radiation, and ultimately a delayed onset of the monsoon.  However, the role of aerosols as the 
“cause” of a decrease or delay in precipitation is not yet confirmed—more research on sub-
seasonal timescales is required to isolate the effect of aerosols from the influence of the large-
scale synoptic flow and associated changes in precipitation.   
 

Land use change 
Humans have had a marked impact on the character of the land surface through 

deforestation, agricultural conversion, and urbanization.  This change in surface character can 
have a long-term impact on surface energy and water budgets (e.g., deforested land may generate 
less evapotranspiration than forested land), which in turn can have a long-term impact on the rest 
of the climate system. 
 

Fluctuations in solar output   
 The sun provides the energy that powers the Earth’s climate system.  Its output varies 
slightly with an 11-year cycle that is highly predictable because it is nearly periodic.  Larger 
changes may occur on longer time scales, but in the absence of measurements, these changes 
cannot be quantified beyond a statement that they appear to be small compared to the signal seen 
from greenhouse gases. As discussed by Haigh et al. (2005), it is likely that the mechanism that 
links solar fluctuations to surface climate involves the communication of anomalies between the 
stratosphere and troposphere, which is discussed in the “Gaps in Our Knowledge” section in this 
chapter. 
 

Volcanoes and other high-impact modifications of atmospheric composition 
There are a number of rare external forcing events that can cause a sudden drastic change 

to the atmospheric burden of aerosols, trace gases, and particulates. Volcanoes are one example. 
Major eruptions are relatively rare (less than one per decade) but can quickly inject large 
volumes of material high into the atmosphere. The effects on the climate system can be felt for 
years afterward, typically as a cooling of the global mean temperature (Robock and Mao, 1995). 
The impacts of major eruptions on temperature distributions over the continental United States 
can be larger than those from internal variations of the climate system discussed earlier in this 
section (Bradley, 1988). Shortened growing seasons caused by an overall reduction of solar 
radiation reaching the ground could have negative impacts on particular crops in some regions.  

Forest fires provide another example of relatively rapid changes in atmospheric 
composition that can affect climate on ISI time scales.  The Indonesian fires in 1997–98 helped 
to exacerbate the very strong El Niño drought.  The aerosol loading altered regional radiative 
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balances (Davison et al., 2004), affecting precipitation in ways that were different from those 
predicted on the basis of the El Niño event (Graf et al., 2009; Rotsayn et al., 2010).  

Other rare events that could significantly modify atmospheric composition include 
nuclear exchange (Robock et al., 2007) or impacts from space. While most of these high impact 
events cannot be predicted with any accuracy, intraseasonal to interannual climate predictions 
subsequent to the event would be affected by the changed atmospheric composition. Given a 
modern climate prediction system, it should be possible to observe and analyze the concentration 
of injected material in the atmosphere and produce ISI forecasts (Ramachandran et al., 2000).  
 
 

Gaps in Our Knowledge 
 

Our understanding of ISI climate predictability—both of its sources and extent—is still 
far from complete.  Numerous gaps still exist in our observations of climate processes and 
variability, in our inclusion of the wide range of relevant processes in models, and in our 
knowledge of the sources of predictability: 

 
• We cannot yet claim to have identified all of the reservoirs, linkages, and teleconnection 

patterns associated with predictability in the Earth system.  For many of the predictability 
sources we have identified, we cannot claim to understand fully the mechanisms that underlie 
them.  The observational record contains many non-stationary trends that may relate to 
predictability but are not yet adequately explained.  The science is proceeding but is 
encumbered by the overall complexity of the system. 

• The models that have been used to evaluate the known sources of predictability and to make 
forecasts are known to be deficient in many ways.  Many key processes associated with 
predictability occur at spatial scales that cannot be resolved by current models.  Examples in 
the atmosphere include cumulus convection, boundary-layer turbulence, and cloud-aerosol 
microphysics; examples in the ocean include horizontal transports associated with eddies and 
vertical mixing.  In addition, processes associated with the coupling of the ocean or the land 
surface to the atmosphere through the exchanges of heat, fresh water, and other constituents 
can be difficult to resolve. The models thus rely on parameterizations, which are simple 
approximations that often have to be “tuned”, making them undependable in untested 
situations.  A wealth of literature is available on the deficiencies of current, state-of-the-art 
climate models; it indicates that currently available dynamical models do not always 
outperform simple empirical models or persistence metrics. 

• Even if the models used were perfect—even if they included and represented accurately all 
physical and dynamical processes relevant to predictability at adequate spatial and temporal 
resolution—they would still be limited in their ability to make accurate forecasts by 
deficiencies in our ability to initialize prognostic fields.   
 
The degree to which these gaps limit our ability to make forecasts—or, stated another way, 

the improvement we could make in forecasts if these gaps were fully addressed—is difficult to 
ascertain.  Exploring sources of predictability, in particular addressing gaps in our understanding 
of these sources, might yield substantial improvements in forecast performance. Here we briefly 
outline several sources of predictability for which gaps in understanding can be clearly 
delineated.   



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

40 Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 
 

 

 
Madden-Julian Oscillation  
 
 Gaps in our understanding of the MJO are discussed in detail in Chapter 4.  Of primary 
importance, dynamical models exhibit systematic biases in representing the MJO.  These biases 
could be a manifestation of many processes that are poorly represented and difficult to observe, 
including coupling between the ocean and atmosphere, shallow and deep convection, cloud 
microphysics, and cloud-radiation interactions.  Additionally, it is still an open question as to 
how to best organize model experiments and pose model-observation comparisons for 
identifying model inadequacies.  The MJO Working Group, formed under the auspices of U.S. 
CLIVAR, brought together representatives of the modeling community to address these gaps.  
This activity has since been extended through the formation of the WCRP-WWPR/THORPEX 
YOTC MJO Task Force (see http://www.ucar.edu/yotc).   
 
Stratosphere 
 

The stratospheric aspects of ISI prediction can only be captured by models that properly 
simulate stratospheric variability. Thus far, the stratosphere’s potential to improve ISI forecasts 
is largely untapped. To take advantage of this predictability source, it is essential that models 
used for seasonal forecasting simulate the intense, rapid shifts in the stratospheric circulation, as 
well as the downward propagation of circulation anomalies through the stratosphere. In addition, 
models need to be able to simulate the poorly understood connections between lower 
stratospheric and tropospheric circulations. 

To maximize predictability from stratospheric processes, forecasting systems also need to 
predict stratospheric warmings and other variability at as long a lead time as possible.  There are 
coordinated international experiments underway to examine how stratospheric processes impact 
ISI forecast quality. 
 
Ocean-atmosphere feedbacks 
 

The two-way interaction between the ocean and the atmosphere plays a very important 
role in ISI predictability.  This interaction can manifest itself as decreased thermal damping, as in 
the case of the ocean mixed layer response to atmospheric forcing, or as quasi-periodic evolution 
of upper ocean heat content, as in the case of ENSO.  Subgrid-scale processes, such as deep 
convection and stratus clouds in the atmosphere, or coastal upwelling in the ocean, are important 
components of this ocean-atmosphere interaction. Our current computational capabilities are 
insufficient to fully resolve these processes in numerical models, and gaps in our scientific 
knowledge of these processes limit our ability to parameterize them accurately. 

Poor simulation of ocean-atmosphere feedbacks degrades the skill of ISI predictions 
though systematic as well as random errors. The systematic errors affect the ensemble-mean 
forecast and also manifest themselves as climate biases in ISI forecast models. Errors in the 
representation of low-level stratus in the vicinity of the coastal upwelling regions off the coasts 
of South America and Africa are a well-known example of the climate bias associated with 
ocean-atmosphere feedbacks. The random errors associated with the feedbacks can lead to 
incorrect estimation of the spread in an ensemble forecast. In the case of ENSO prediction, 
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random errors associated with the subgrid-scale parameterizations in the atmospheric model are 
believed to be responsible for the weak ensemble spread in ENSO forecasts. 
 
Cryosphere 
 

Generally, ISI prediction models use climatological sea ice or initialize a sea ice model 
with climatology. Despite the potential for prediction, the effects of sea ice are poorly included 
in ISI prediction models. From a simple energetic consistency perspective, active sea ice models 
that capture the relevant feedbacks need to be included in the ISI models. There is a clear need to 
identify the remote effects (and causes) of sea ice anomalies and understand associated processes 
and influence on forecast quality.  Land ice (Antarctic and Greenland ice caps, glaciers) is 
similarly treated very simply, but it is considered to change on timescales too long to affect ISI 
variability. 

Snow in the Northern Hemisphere is a highly variable surface condition in both space and 
time.  Its impacts on the surface energy and water budgets make it a viable candidate for 
contributing to atmospheric anomalies and ISI predictability.  The potential role for knowledge 
of snow cover anomalies to contribute to forecasts of the Northern Hemisphere winter 
temperature and East Asian winter monsoon has been mentioned in the Inertia subsection.  
However, operational models have yet to exploit this source of predictability. Models typically 
have some initialization and representation of snow cover effects, but the quality and impact of 
these effects are largely untested. 
 
Soil Moisture 
 

Soil moisture initialization as a source of subseasonal prediction quality is discussed in 
greater detail in Chapter 4.  Although soil moisture can be initialized globally with current Land 
Data Assimilation System (LDAS, see Chapter 3) frameworks, the accuracy of the initialization 
could be improved with better measurements of (for example) rainfall and radiation, and it will 
presumably improve further with the advent of true and operational assimilation of land surface 
prognostic states.  Improved estimates of land parameters (e.g., active soil depth, soil texture) 
would also help; accuracy in these estimates, which affect the simulation of surface hydrology 
and thus the surface energy balance, is currently limited by insufficient observational data.  
Statistical optimization of these parameter values may prove fruitful. 

Arguably, in regard to ISI forecasting, the largest “gap” in the soil moisture realm is the 
degree of uncertainty in the strength of land-atmosphere coupling—our lack of knowledge of the 
degree to which soil moisture variations in nature affect variations in precipitation and air 
temperature.  Such coupling strength cannot be measured directly with instruments (it can only 
be inferred indirectly at best), and the estimates of coupling strength quantified with modeling 
systems vary widely (Koster et al., 2006), indicating a substantial uncertainty in our knowledge 
of how best to model the relevant underlying physical processes such as evaporation, the 
structure of the boundary layer, and moist convection.  Evaluating these individual components 
is thus important, but it is currently hindered by data availability. For example, direct joint 
measurements of evaporation and soil moisture at the hundred-kilometer scale are non-existent, 
making difficult the evaluation of whether model-generated evaporation fluxes respond 
realistically to soil moisture variations.  Such gaps imply a need for joint model development and 
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observational analysis, focusing on all of the physical processes connecting soil moisture to 
atmospheric variables. 
 
Non-stationarity 
 

Many statistical models employ assumptions regarding stationarity in the data (i.e., the 
statistics associated with the predictand do not depend on the time of sampling). However, long 
term trends associated with global warming and other alterations to the climate system (e.g., 
changes in land cover) demonstrate that the requirements of stationarity are unlikely to be met 
for many time series of climate data.  In addition to trends, examples of non-stationarity include 
alterations in the variability of sources of predictability by the annual cycle (i.e., the impact of 
the annual cycle on ENSO), or by interactions among sources of predictability.  Although 
optimal climate normals (e.g. Lamb and Changnon, 1981; Huang et al., 1996a) offer a valuable 
statistical tool for dealing with non-stationarity, a better physical understanding is needed 
regarding the effect of trends on the sources of predictability as well as the ways in which the 
variability associated with a source may be non-stationary.  
 
 

METHODOLOGIES USED TO QUANTITATIVELY  
ESTIMATE PREDICTION SKILL 

 
 Prediction skill has been studied in depth since the early 1900s when Finley claimed 
considerable skill in forecasting tornadoes. Nearly simultaneously, recognition of the limitations 
of measuring skill surfaced (Murphy, 1991; 1993) resulting in the modern definition of skill as 
the accuracy of a forecast relative to some known reference forecast, such as climatology or 
persistence. In Finley’s case, his claims of skill were relative to random forecasts.  
 The skill, or more generally the quality, of forecasts rests on all aspects of the forecast 
process: the assimilation of observed data for initialization, the completeness and accuracy of the 
observed data itself, the model(s), and the manner in which the models are employed and 
interpreted when producing the forecast. These elements and how they come together will be 
discussed in detail in Chapter 3. Here, the approaches and metrics commonly used to estimate 
the quality of a prediction or a model are described.  In addition, discussion is offered for some 
newer and lesser-used metrics that could complement existing ones.  
 No single metric can provide a complete picture of prediction quality, even for a single 
variable. Thus, a suite of metrics needs to be considered (WMO SVS-LRF, 2002; Jolliffe and 
Stephenson, 2003), particularly when new models or forecast systems are compared with 
previous versions. Within any meaningful suite of metrics, one needs to consider the quality of 
the probabilistic information. The climate system is inherently chaotic, and our ability to 
measure its initial state is subject to uncertainty; thus any predicted or simulated representation 
of the climate needs to be probabilistic. While increased accuracy is often the goal of model or 
forecast improvements, the improved representation of some physical process in a model might 
not lead to increased accuracy, but it might better quantify the uncertainty in variables influenced 
by that process.  
 This section is broken into two subsections: model validation and forecast verification. 
The forecast verification section addresses the various metrics that are used to assess the quality 
of climate forecasts, typically for temperature and precipitation. As a good quality model is an 
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obvious prerequisite to a good quality forecast, the section on model validation is presented first. 
Model validation may incorporate some of the same metrics as used in forecast verification, but 
it involves more because the model contains the physical processes in addition to the desired 
prediction fields. Model validation is typically performed prior to using a model for real-time 
forecasting in order to design statistical corrections for systematic model biases and to better 
understand the model’s variability characteristics, such as accuracy of regional precipitation 
anomalies under El Niño conditions or the strength and timescale of the MJO.  

 
 

Model Validation 
 
 Comparing a model environment to the observed conditions is a difficult task.  Starting 
with the observed climate, there are numerous scales of variability that cannot be resolved, much 
less measured at regular intervals.  As a result, any comparison would use an incomplete picture 
of the atmosphere or ocean.  The “incompleteness” of the available observations constitutes 
sampling error.  On a practical level, since measurement systems are not homogeneous in space 
and time, scientists select those variables that are considered most important.  The problems 
become more complicated if a set of observations and model predictions are not available or 
valid over a common period.  No numerical model is perfect, hence model errors are generated.  
Therefore, the observations and model predictions only can be collected to form two incomplete 
and imperfect probability density functions (PDFs), which provide a basis for comparison. 

An example of several PDFs associated with predictions of SST in the tropical Pacific 
Ocean is shown in Figure 2.8.  The initial prediction is shown in green.  Relative to this PDF, the 
subsequent PDFs (red and blue) exhibit higher probabilities for warmer temperatures.  This shift 
to warmer temperatures was in fact reflected by the verification: the observed temperature 
anomaly was just below 0.8°C, in between the peaks of the two later PDFs.  The standard 
deviation of the three PDFs is a function of lead-time, although the dependence is perhaps 
surprisingly small here. The relatively small dependence reflects the relatively large set of 
available tools and the fact the forecast uncertainty with these tools is large. 

A realistic model strives to capture the full variability of the climate system.  In 
particular, such a model needs to capture the full PDF and the temporal and spatial correlations 
of the observations, even if the forecast information to be disseminated is only a summarized 
version of that PDF.  Additionally, PDFs allow for identification of multimodal distributions, 
whereas summary statistics (e.g., means, variances, skewnesses) cannot.  Several goodness-of-fit 
tests exist that can check for a significant agreement between the observed and simulated PDFs. 
When such a test is not practical, the mean and variance should be compared between the 
observations and model, as a minimum, and the skewness, if possible.  Skewness differences can 
point to processes not being captured, as well as to nonlinearities. Any statistical analysis of 
these PDFs, particularly ones that attempt to assess skill or significance, will hinge on specific 
assumptions of the tests applied.  A sufficiently large sample size will show the models’ 
depiction of the atmosphere or ocean to differ from that of the observations.  For those interested 
in comparing models to the observed world, this leaves us at an interesting juncture, one that 
may not have an answer without simplification (Oreskes et al., 1994).  Can an experiment be 
designed to answer the question, “How good is a model or prediction?”  Since we do not 
understand all of the processes and interactions that would lead to a perfect prediction, a strict 
validation is not possible.  Additionally, it is possible that a model prediction can verify correctly  
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FIGURE 2.8  Examples of probabilistic predictions for Nino3.4 SST anomaly, represented by 
probability density functions (PDFs).  The green curve is the prediction with the longest lead 
time (9 months), followed by the red (6 months) and blue (3 months) curves.  With shorter lead 
times, the PDF for the prediction shifts to progressively warmer temperatures.  The observed 
value for Nino3.4 SST anomaly is indicated by the vertical black line (0.78°C). SOURCE: 
International Research Institute for Climate and Society (IRI). 
 
  
for the incorrect reason.  Although a perfect validation is not possible, obtaining a useful 
comparison is possible if one recognizes the level of uncertainty associated with the observations 
and model.  Moreover, constructing specific hypothesis tests is a viable alternative.  One might 
pose the question as “what aspect of the distribution of the observed atmosphere matches that of 
the atmosphere simulated by numerical models?” 
 
 
Statistical Techniques for Identifying and Predicting Modes of Variability  
 
 The climate system is characterized by recurrent patterns of variability, sometimes 
referred to as modes of variability, which include ENSO, NAO, etc. Often, the identification of 
modes linking remote locations in the atmosphere or the ocean-atmosphere is useful for medium- 
to long-range prediction (Reynolds et al., 1996; Saravanan et al., 2000).  Numerous 
methodologies have been applied to identify such modes, ranging from linear correlation to 
multivariate eigentechniques (Montroy et al., 1998) and nonlinear methods (Lu et al., 2009; 
Richman and Adrianto, 2010).  Definitions of these techniques may be found in Wilks (2006) 
and a summary of their use for mode identification is contained in Appendix A.  Often, as the 
time scale increases, the nonlinear contribution to the modes tends to be filtered. However, 

6-month 
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Athanasiadis and Ambaum (2009) note that the maintenance and evolution of low frequency 
variability arise from inherently nonlinear processes, such as transient eddies, on the 
intraseasonal time scale.  This suggests that linear techniques may not fully capture the 
predictability associated with the modes, and the use of nonlinear techniques needs to be 
explored (e.g., Kucharski et al., 2010). 

 
 

Merits of Nonlinear Techniques 
 

To date, nearly all mode identification has been limited to linear analyses.  In fact, we 
have defined our concept of modes through linear correlations and empirical orthogonal 
functions (EOFs)/principal component analysis (PCA) as those were the techniques that were 
computationally feasible at the time.  Recently, nonlinear mode identification has begun to 
emerge as efficient nonlinear classification techniques have developed and as computational 
power has increased.  To assess the degree of nonlinearity, the skill of nonlinear techniques can 
be compared to that derived from traditional linear methods (Tang et al., 2000).  Forecasters can 
investigate if extracting the linear part of the signal is sufficient for prediction.  On the 
intraseasonal time scale, when monsoon variability has been probed by a nonlinear neural 
network technique (Cavazos et al., 2002), a picture emerges with nonlinear modes related to the 
nonlinear dynamics embedded in the observed systems (Cavazos et al., 2002) and model physics 
(Krasnopolsky et al., 2005).  Nonlinear counterparts to PCA, such as neural network PCA, have 
been shown to identify the nonlinear part of the ENSO structure (Monahan and Dai, 2004).  By 
using a nonlinear dimension reduction method that draws on the thermocline structure to predict 
the onset of ENSO events, Lima et al. (2009) have shown increased skill at longer lead times in 
when compared to traditional linear techniques, such as EOF and canonical correlation analysis 
(CCA).  Techniques have also been applied to cloud classification (Lee et al., 2004), wind storm 
modeling (Mercer et al., 2008) and classification of tornado outbreaks (Mercer et al., 2009).   
Some nonlinear techniques, such as neural networks, are sensitive to noisy data and exhibit a 
propensity to overfit the data that they are trained on (Manzato, 2005), which can limit their 
utility in forecasting.  Careful quality control of data is essential prior to the application of such 
methods.  To assess the signal that is shared between the training and testing data, some form of 
cross-validation is typically required (Michaelson, 1987).  Techniques include various forms of 
bootstrapping (Efron and Tibshirani, 1993), permutation tests (Mielke et al., 1981), jackknifing 
(Jarvis and Stuart, 2001) and n-fold cross validation (Cannon et al., 2002). 

Kernel techniques, such as support vector machines, kernel principal components 
(Richman and Adrianto, 2010), and maximum variance unfolding, avoid the problem of finding a 
local minimum and overfitting.  Kernel techniques have a high potential for mode identification 
where linear modes provide ambiguous separability (e.g., the overlapping patterns of the Arctic 
Oscillation and the North Atlantic Oscillation).  
 
 

Forecast Verification  
 
 Finley’s tornado forecasts were more skillful than random forecasts, according to the 
metric he was using, which tabulated the percentage of correct forecasts.  It credited forecasts of 
‘no tornado’ on days with no tornadoes, and tornadoes were present on less than 2% of the days. 
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It turns out that if he had always predicted “no tornado” his skill would have been even greater 
(Jolliffe and Stephenson, 2003).  This example illustrates the value in considering what aspect of 
forecast quality a metric should measure, and the baseline against which it is assessed. The 
particular assessment of forecast quality often depends on what characteristics of the forecast are 
of greatest interest to those who would use the information. No one verification measure can 
capture all aspects of forecast quality. Some measures are complementary, while others may 
provide redundant information. This section outlines several recommended (WMO SVS-LRF, 
2002) and commonly-used metrics for verifying forecasts, and which aspects of forecast quality 
they address (see Jolliffe and Stephenson, 2003).  

WMO’s Standard Verification System (SVS) for Long Range Forecasts (LRF) (2002) 
outlines specifications for long-range (monthly to seasonal) forecast evaluation and for exchange 
of verification scores. The SVS-LRF provides recommendations on scores for both deterministic 
and probabilistic forecasts. For deterministic forecasts, the recommended metrics are the mean 
square skill score and the relative operating characteristics (ROC; curve and area under the 
curve; Mason and Graham, 1999). For categorical forecasts the recommended metric is the 
Gerrity Score (Gerrity, 1992).  For probabilistic forecasts, the recommended metrics are the ROC 
and reliability diagrams.  While these metrics are the main ones advocated by the WMO, several 
others are in regular use by modeling and prediction centers, and still others are being promoted 
as potentially more interpretable, at least for forecast users.  Below, a variety of metrics are 
discussed and evaluated.  
 
 
Deterministic Measures 
 
 Correlation addresses the question: to what extent are the forecasts varying coherently 
with the observed variability? Correlation assessments are typically done with anomalies (Figure 
2.9a), or deviations from the mean, and can be applied to spatial patterns of variability (pattern 
correlations) or to time series of variability (temporal correlations). The agreement of co-
variability does not indicate if the forecast values are of the right magnitude, and so it is not 
strictly a measure of accuracy in the forecast.  

The mean squared skill score (MSSS) addresses the question: How large are the typical 
errors in the forecast relative to those implied by the baseline? The baseline could be 
climatology, for example, assuming the next season’s temperature will be that of the average 
value from the previous 30 years.  The MSSS is related to the mean squared error (MSE) and 
summarizes several contributions to forecast quality, namely correlation, bias, and variance 
error. The root mean squared error (RMSE; equal to the square root of MSE) is much more 
widely used than either MSE or MSSS.  For a predicted variable whose magnitude is of 
particular interest, such as the SST index of ENSO, the RMSE may be a preferred metric of 
forecast quality given its straightforward interpretation. However, RMSE alone is of limited 
information to the forecast community that wishes to identify the source of the error (Figure 
2.9b). 
 The relative operating characteristics (ROC) addresses the question: can the forecasts 
discriminate an event from a non-event? The ROC curve effectively plots the hit rate, which is 
the ratio of correct forecasts to the number of times an event occurred, against the false alarm  
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FIGURE 2.9 An example of a multi-model ensemble (MME) outperforming individual models 
in forecasting.  (a) Anomaly correlation; the red line (MME) is above the individual models 
(colored lines), demonstrating that the pattern of anomalous temperature from the ensemble is a 
closer match to observations.  (b) RMSE of NINO3.4; the red line is below the individual 
models, demonstrating that the magnitude of the errors associated with the ensemble is smaller. 
Black represents a persistence forecast. Names of the individual coupled models shown in the 
legend. SOURCE:  Figure 7, Jin et al. (2008) 
 
 
rate (probability of false detection), which is the ratio of false alarms to total number of non-
occurrences. Therefore, one can assess the rate at which the forecast system correctly predicts the 
occurrence of a specific event (e.g. “above-normal temperature,” El Niño conditions, etc.), 
relative to the rate at which one predicts the occurrence of an event incorrectly (Figure 2.10). If 
the forecast system has no skill, then the hit rate and false alarm rates are similar and the curve  
lies along the diagonal in the graph (area = 0.5). Positive forecast skill exists when the curve lies 
above the diagonal (0.5 < area <= 1.0) and the skill can be measured by the “area under the ROC 
curve”. 
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FIGURE 2.10  An example of a ROC curve that plots Hit Rates vs. False-Alarm Rates. In this 
case, the Hit Rate is the proportion of rainfall events (either above-normal, solid line, or below-
normal, dotted-line) that were forecasted correctly; the False-Alarm Rate is the proportion of 
non-events (i.e., incidences of near normal rainfall) for which an event was forecasted. Since the 
curves are above the gray line, the forecast is considered skillful using this metric.  The forecasts 
correspond to rainfall during September through November in a region in Africa during for the 
period 1950–1994 The areas beneath the curves, A, are indicated also. SOURCE: Figure  2, 
Mason and Graham (1999). 

 
 

Probabilistic Measures 
 

The key aspect of probabilistic forecasts is that they proffer quantitative uncertainty 
associated with the forecast. Thus, if a forecast includes uncertainty, it is important to assess the 
meaningfulness of that uncertainty; probabilistic forecasts need to be assessed probabilistically. 
Providing deterministic metrics as well, such as correlation or hit rate of the most likely 
outcome, may give additional information of use to decision makers, but provided alone, 
deterministic measures undermine the richness of the forecast information. For example, a 
deterministic measure such as a hit score based on collapsing the probabilistic forecasts to a 
deterministic forecast for the category with the largest probability, for purposes of verification, 
cannot then distinguish between a forecast of 100% likelihood and one of 40% likelihood of 
above-normal (e.g. for a 3-category system, with climatologically equal odds). However, the 
reaction of decision makers to such differing confidence in the predicted outcome would 
certainly be much different. 

An important aspect of a quantitative probabilistic measure is that it is equitable.  The 
term equitable means that a forecaster is not penalized for making a forecast that has a low 
climatological probability (e.g., forecasting a below normal temperature when the climatological 
probability of a below normal temperature is less than 10 percent). 

The potential value of probabilistic assessment of forecasts is large for the model 
development, forecasting, and decision making communities. While users of the forecast 
information may stress the desire for “accurate” information, the climate system is inherently 
probabilistic. The most likely outcome, or equivalently the probabilistic median or the 
deterministic forecast, may give a general sense of expectations for the seasonal climate, but that 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

Climate Prediction  49 

information needs to be accompanied by an estimate of the uncertainty. Commercial decisions 
are often made, not on the basis of events which are likely to occur, but on the basis of events 
which are unlikely to occur, but which if they did occur, would involve serious financial loss 
(Palmer, 2002).  

The Heidke skill score (HSS), which is actually appropriate to binary forecasts rather 
than probabilistic forecasts, has been applied in the context of probabilistic categorical forecasts 
where they have been collapsed into binary categorical forecasts by retaining the category with 
highest probability.  The HSS can be interpreted to addresses the question: did the forecast 
indicate the correct shift in the probability distribution more often than would be expected by 
chance? This score may be seen as desirable to some because it is convenient and easily 
interpreted (Livezey and Timofeyeva, 2008), indicating how often the forecast is “correct” or not 
(Figure 2.11). However, if it is applied to a probabilistic forecast the HSS degrades the 
information content as described above. 

The Heidke Skill Score is considered biased and may not be equitable.  Jolliffe and 
Stephenson (2003) claim it is equitable for applications involving binary predictions (e.g., yes or 
no; event or non-event).  Wilks (2006) claims it is not equitable for higher-order designs, since 
the correct forecasts of less likely events do not properly receive more weight (personal 
communication, Wilks, 2009).  Thus, the forecaster may be discouraged from forecasting rare 
events on the basis of their low climatological probability.  The reason for the bias in the Heidke 
skill is that the reference hit rate in the denominator is not constrained to be unbiased.  This 
means the imagined random reference forecasts in the denominator have a marginal distribution 
that is not necessarily equal to that of the sample climatology.  Peirce Skill (Wilks, 2006) is 
unbiased and can be substituted for Heidke skill. 

The probabilistic ROC is a variant of the ROC described previously that considers the hit 
rates and false alarm rates for events forecast at varying levels of probabilistic confidence. 

The Brier skill score (BSS) is a summary score of forecast quality that encapsulates both 
reliability and resolution measures of forecast quality. Reliability, discussed more below, 
addresses the question: to what extent do the probabilities mean what they say? Resolution 
addresses the question: can the probabilistic forecasts discern changes in the frequency of 
observed events relative to the underlying climatological distribution? An example of good 
forecast resolution would be that when forecasts were issued with high probability for an El Niño 
event, El Niño events were much more likely to happen than would be estimated from their 
observed frequency over all years. 

A reliability diagram shows the complete joint distribution of forecasts and observations 
for a probabilistic forecast of an event or forecast category (such as the above-normal tercile) 
(Figure 2.12). They indicate to what degree the probabilities assigned to an event are 
representative of the likely occurrence of that event. In a reliable forecast system, the probability 
assigned to a particular outcome should be the frequency with which—given the same forecast—
that outcome should be observed. The information supplied by reliability diagrams includes 
calibration, or what is observed given a specific forecast (e.g., under and overforecasting), as 
well as resolution and refinement which is the frequency distribution of each of the possible 
forecasts giving information on the degree of aggregate forecaster confidence (small inset graph 
in Figure 2.12).  Reliability diagrams can further indicate whether there are systematic biases in 
the forecasts, such as not predicting enough occurrences of above-normal temperatures. Such 
probabilistic verification, as ROC scores or reliability diagrams, also can be useful for estimating 
event-specific prediction skill, for example if El Niño events were better predicted than La Niña  
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FIGURE 2.11  Seasonal differences in forecast skill (contours) for temperature and how 
frequently (shading) forecasts differ from climatological odds (i.e., equal chances of normal, 
above-normal, and below-normal).  Blue (tan) corresponds to areas where forecasts are often 
similar to (often different from) the climatological odds.  The skill metric is a Heidke skill score, 
and is calculated by including only those forecasts that differ from climatological odds.  Areas 
with high-valued contours indicate where deviations from climatology have frequently been 
forecasted correctly.  The forecasts are from CPC and are valid ½ month from issuance. 
SOURCE:  Figure14, O’Lenic et al. (2008).  
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FIGURE 2.12  An example of a reliability diagram, which indicates the skill of probabilistic 
forecasts.  The diagram compares the forecasted probability of an event (in this case, above-
normal winter rainfall in North America) to its observed frequency.  A perfect forecast is 
represented by the dashed line, a horizontal line represents a forecast identical to climatology, 
and sloped lines are potentially skillful.  The blue and red lines correspond to individual CGCMs 
and AGCMs, respectively, and are more horizontal than the black line, which represents the 
mean of these models.  While the mean of the models is more reliable than any of the individual 
models, it tends to be underconfident for rare events (the black line lies above the perfect 
forecast line for low-probability events).  Typically, a histogram accompanies a reliability 
diagram (inset), indicating the number of times that forecasts of various confidence levels were 
issued.  SOURCE: Adapted from Goddard and Hoerling (2006).  
 
 
events or if drought conditions were better predicted than very wet seasons. A distinction in 
prediction skill between the cases of high and low variability calls for further examination of the 
physical causes of the discrepancy, and whether it is inherent to the climate system dynamics or 
a shortcoming of the model(s).   
  
 
Impacts of Non-Stationarity on Assessment of Skill 
 

This section provides consideration of forecast verification in the context of a changing 
background climate. Many measures of prediction skill are sensitive to how much the prediction 
deviates from climatology; therefore, the assessment of seasonal predictions can be influenced 
by both changes in the drivers of climate predictability as well as trends or other slowly varying 
changes in the background state. ENSO exerts the greatest influence on seasonal-to-interannual 
climate variability globally (e.g. Glantz, 1996). As a result, climate predictions made during 
ENSO events yield much higher skill than those made during ENSO-neutral conditions (e.g. 
Goddard and Dilley, 2005; Livezey and Timofeyeva, 2008). Although an ENSO event typically 
occurs every 3–7 years, decadal modulation of the frequency and intensity of ENSO events is 
evident over the observational record of the 20th century (Zhang et al., 1997) and over the last 
millennium based on proxy coral data (Cobb et al., 2003). Therefore, there will be periods with 
higher prediction quality than others merely because there were more or stronger ENSO events 
during that period. Higher prediction skill will also appear in many metrics (e.g. correlation, 
Heidke skill score) when the background mean state climate is non-stationary, i.e. presence of 
trends; the non-stationarity could be due to anthropogenic climate change or natural variability  
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FIGURE 2.13  Progress in the seasonal forecast skill of the ECMWF operational system during 
the last decade. The solid bar shows the relative reduction in mean absolute error of forecast of 
SST in the Eastern Pacific (NINO3). The brown-striped bar shows the contribution from the 
ocean initialization, and the white-striped bar is the contribution from model improvement. 
SOURCE: Balmaseda et al. 2009. 
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on long multi-decadal timescales. Climate predictions are typically communicated as deviations 
from “climatology,” or the background mean-state. If the mean-state is changing over time, the 
magnitude of the seasonal deviation will depend on the period used to define the climatology. 
Equivalently, predictions of deviations in the same direction as the “trend” can be credited with 
relatively high quality that is derived more from the slowly evolving trend than the interannual 
variability. For example, under anthropogenic climate change, the temperatures over most land 
areas are increasing relative to the mean state, say 1971–2000 (Trenberth et al., 2007). That does 
not necessarily mean that each year will be warmer than the year preceding it. However, 
predicting temperatures to be “above-normal,” will appear skillful by many measures because 
temperatures in this decade are very likely to be warmer than those of 30 years prior. 
 A relevant question is then: can the forecast system discriminate between conditions in a 
pair of forecasts more often than not? For example, if year X is observed to be warmer than year 
Y, was that predicted to be so? Discrimination tests of forecast-observation pairs of cases 
addressing this type of question can be applied to deterministic or probabilistic forecasts. A 
generalization of such discrimination tests is outlined in Mason and Weigel (2009), and in many 
cases the metric becomes equivalent to those described above, such as generalized ROC areas for 
tercile probabilistic forecasts. 
 
 

CHALLENGES TO IMPROVING PREDICTION SKILL 
 
 This chapter has provided the historical perspective on climate prediction, pointed to 
where there are opportunities to improve prediction quality by improving our understanding and 
representation in models of sources of predictability, and reviewed the methods available to 
quantify skill.  From the 1980s to the 1990s, seasonal prediction quality improved dramatically, 
but then did not improve further (Kirtman and Pirani, 2008, 2009).  The challenges in going 
forward are not only to determine where to gain further improvements but also to assess and 
understand the reasons for any incremental gains in prediction quality that have occurred.   
 In the following section we examine the building blocks of intraseasonal to interannual 
forecasting. Improvements may stem from better observations, better models, and improved 
assimilation.  Recent analyses demonstrate how improvements in these components of forecast 
systems are the source for improvements in forecast quality (Stockdale et al., 2010; Balmaseda et 
al, 2009; Saha et al., 2006; Fig. 2.13), and thus predictability.  

At the same time improvements may result from changes in the way in which the 
community works.  Kirtman and Pirani’s (2008, 2009) summary of the first World Climate 
Research Program Workshop on Seasonal Prediction indicates that that workshop recommended 
adoption of best practices in seasonal forecasting, including the adoption of common approaches 
to the production, use, and assessment of seasonal forecasts.   
 Thus, the challenges to improving intraseasonal to interannual prediction skill lie not only 
in improvements of the building blocks but also in how the community works together.  
Experimental modeling and examination of the incremental skill to be gained from new sources 
of predictability are needed.  The three case studies provide examples of physical processes 
being examined as sources of predictability.  A further challenge is to develop the community 
framework to nurture ongoing improvements to dynamical models. 
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3 
Building Blocks of Intraseasonal to 

Interannual Forecasting 
 
 

An ISI forecast is made utilizing observations of the climate system, statistical and/or 
dynamical models, data assimilation schemes, and in some cases the subjective intervention of 
the forecaster (see Box 3.1).  Improvements in each of these components, or in how one 
component relates to another (e.g., data assimilation schemes expanded to include new sets of 
observations; observations made as part of a process study to validate or improve parameters in a 
dynamical model), can lead to increases in forecast quality. This portion of the report discusses 
these components of ISI forecasting systems, with an emphasis on assessing quality among 
forecast systems following a change in forecast inputs.  Past advances that have contributed to 
improvements in forecast quality are noted, and the section ends by presenting areas in which 
further improvement could be realized.   

 
 

HISTORICAL PERSPECTIVE FOR INTRASEASONAL TO INTERANNUAL 
FORECASTING 

 
Scientific weather prediction originated in the 1930s, with the objective of extending 

forecasts as far into the future as possible.  Studies at MIT under Carl Gustaf Rossby 
consequently included longer time scales than just the daily prediction issue. Jerome Namias 
became a protégé of Rossby, and took on the task of extending to longer scales as director of the 
“Extended Forecast Section” of the Weather Bureau/National Weather Service.  The approaches 
developed emphasized upper level pressure patterns that could persist or move according to the 
Rossby barotropic model, and could provide “teleconnections” from one region to another. These 
patterns were then used to infer surface temperature and precipitation patterns. The latter were 
initially done by subjective methods, but soon statistical approaches were adopted through the 
work of Klein.  For more than a few days in advance, prediction of daily weather would 
necessarily have low skill and so monthly or longer forecasts were obtained as averages. Work 
by Lorenz in the 1960s explained the lack of atmospheric predictability after more than about 10 
days in terms of the chaotic nature of the underlying dynamics (see Chapter 2). At about the 
same time, Namias was emphasizing the need to consider underlying anomalous boundary 
conditions as provided by SSTs, soil moisture, and snow cover.  The importance of changing 
tropical SSTs through ENSO was first identified by Bjerknes in the late 1960s.  A first 90-day 
seasonal outlook was released by NOAA in 1974. 
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BOX 3.1   
TERMINOLOGY FOR FORECAST SYSTEMS 

 
Observation—measurement of a climate variable (e.g., temperature, wind speed).  Observations 
are made in situ or remotely.  Many remote observations are made from satellite-based 
instruments.  
 
Statistical model—a model that has been mathematically fitted to observations of the climate 
system using random variables and their probability density functions.   
 
Dynamical or Numerical model—a model that is based, primarily, on physical equations of 
motion, energy conservation, and equation(s) of state. Such models start from some initial state 
and evolve in time by updating the system according to physical equations. 
 
Data assimilation—the process of combining predictions of the system with observations to 
obtain a best estimate of the state of the system. This state, known as an “analysis”, is used as 
initial conditions in the next numerical prediction of the system. 
 
Operational forecasting—the process of issuing forecasts in real time, prior to the target period, 
on a fixed, regular schedule by a national meteorological and/or hydrological service.  
 
Initial conditions/Initialization—Initial conditions are estimations of the state (usually based on 
observational estimates and/or data assimilation systems) that are used to start or initialize a 
forecast system. Initialization can include additional modification of the initial conditions to best 
suit the particular forecast system.  

 
 Progress since the 1960s can be discussed in terms of advances in forecasting approaches 
(including their evaluation) and improved understanding and treatment of underlying 
mechanisms.  One major direction of advancement in forecasting has been that of dynamical 
modeling (see “Dynamical Models”section in this chapter).  Generally the dynamical models 
continued to improve according to advancements in computational resources and a growing 
knowledge of the key processes to be modeled. However, official forecasts in the United States 
depended on subjective interpretation of these objective products. In addition, various statistical 
(empirical) modeling approaches were developed and improved to remain as capable as the 
dynamical approaches in their validation.  Other countries have been developing similar 
capabilities for seasonal prediction since the 1980s, largely depending on numerical modeling.   

Recognition of the role of tropical SST anomalies, especially those associated with 
ENSO, in driving remote climate anomalies has led to much work in predicting tropical SST.  
Some of the key advancements in estimating these SSTs developed during the TOGA 
international study in conjunction with the deployment of the Tropical Atmosphere Ocean 
(TAO) array in the 1980s and 1990s (NRC, 1996; see “Ocean Observations” section in this 
chapter and “ENSO” section in Chapter 4).   

Further expansion of the efforts in ISI forecasting have been undertaken by CLIVAR 
(Climate Variability and Predictability), a research program administered by the World Climate 
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Research Programme (WCRP).  CLIVAR supports a variety of research programs9 around the 
world focused on cross-cutting technical and scientific challenges related to climate variability 
and prediction on a wide range of time scales.  CLIVAR also helps to coordinate regional, 
process-oriented studies (WCRP, 2010).   

What follows is a description of the “building blocks” of an ISI forecasting system: 
observations, statistical and numerical models, data assimilation schemes. The quality and use of 
forecasts are also discussed.  It is a broad overview, offering some historical context, an 
evaluation of strengths and weaknesses, and potential avenues for improvement.  At the 
conclusion of Chapter 3, the key potential improvements are summarized; the Recommendations 
(Chapter 6) have been made with these improvements in mind.  

 
 

OBSERVATIONS 
 

Observations are an essential starting point for climate prediction.  In contrast to weather 
prediction, which focuses primarily on atmospheric observations, ISI prediction requires 
information about the atmosphere, ocean, land surface, and cryosphere.  Also in contrast to 
weather prediction, the observational basis for ISI prediction is both less mature and less certain 
to persist.  Indeed, both continuing evolution and the need to sustain observations for ISI 
prediction are seen as issues at present and into the future.  International cooperation and the 
governance of the World Meteorological Organization do much to ensure continuity of weather 
observations.  Similar international cooperation is being developed for climate observations, but 
formal international commitments to these observations are not the general case.  The following 
sections describe some of the platforms available for making these observations, and the increase 
in the number of observations over time. 

Observations of quantities that end-users track, such as sea surface temperature and 
precipitation, and of quantities that record the coupling between elements of the climate system, 
such as soil moisture and air-sea fluxes, are particularly useful to assess both the realism of 
models and identify longer-term variability and trends that provide the context for ISI variability.  
However, current observational systems do not meet all ISI prediction needs, or are not always 
used to maximum benefit by ISI prediction systems.  Some observations for the Earth system 
needed for initialization are not being taken, or are not available at a spatial or temporal 
resolution to make them useful.  Some observations have not been available for a sufficiently 
long period of time to permit experimentation, validation, verification, and inclusion within 
statistical or dynamical models.  In yet other cases, the observations are available, but they are 
not being included in data assimilation schemes.  Additionally, regionally enhanced observations 
or studies that target learning more about the processes that govern ISI dynamics, including 
developing improved parameterizations of processes that are sub-grid scale in dynamical models, 
are needed. 

New observations, both in situ and remotely sensed, may be available through research 
programs.  Part of the challenge is to integrate these new observations, assess their utility and 
impact, and then, if the observations contribute to ISI prediction, develop the advocacy required 
to sustain them.  Integration of observational efforts, as in CLIVAR climate process teams or by 
                                                 
9 Programmatic evaluation of the U.S. CLIVAR project office can be found in NRC (2004).  Historical 
strategic recommendations germane to ISI forecasting for CLIVAR’s Global Ocean-Atmospehre-Land 
program (GOALS) can be found in NRC (1998). 
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bringing together observationalists with operational centers to engage in observing system 
simulation studies and assessments of the improvement stemming from observations have merit.  
Heterogeneous networks of observations, at times obtained by different organizations, may need 
better integration into accessible data bases and particular attention from partnered 
observationalists and modelers.  For all observations, appropriate attention to metadata and data 
quality, including realistic estimates of uncertainty, are essential to ensuring their use and utility. 
 
 

Atmosphere  
 

Over the years the conventional meteorological observing system evolved from about 
1,000 daily surface pressure observations in 1900 to about 100,000 at the present.  Likewise, 
upper air observations (rawinsondes, pilot balloons, etc.) grew from less than 50 soundings in the 
1920s to about 1,000 in the 1950s (of which most were pilot balloons).  Today, there are about 
1,000 rawinsondes used regularly (Dick Dee, personal communication). Satellite observations, 
introduced into operations in 1979, ushered in a totally new era of numerical weather prediction, 
although it was only in the 1990’s that the science of data assimilation (see “Data Assimilation” 
section in this chapter) progressed enough to demonstrate that there was a clear positive impact 
from satellite data when added to rawinsondes in the Northern Hemisphere. Figure 3.1 illustrates 
the huge increase of different types of available satellite observations in the last two decades 
assimilated for ECMWF operational forecasts. These satellite products have not only grown in 
number, but also in diversity.  They can provide information about atmospheric composition and 
hydrometeors, as well as vertical profiles of thermodynamic properties. 

The assimilation of each of these observing systems poses a new challenge, and the full 
impact of each may not become clear for years because of the partial duplication of information 
among the different systems.  It is often difficult to attribute an increase in prediction quality to 
the incorporation of a new set of observations in an ISI forecasting system.  Some examples of 
improvements arising from the assimilation of specific observations, such as AMSU radiances, 
are discussed in the “Data Assimilation” section of this chapter.   

The incorporation of targeted observations that focus on atmospheric processes that are 
sources of ISI predictability could also contribute to ISI forecast quality.  In some cases, these 
observations exist for research purposes but are not being exploited by ISI forecast systems.  In 
other cases, these observations do not exist.  For example, high resolution observations of the 
vertical structure of the tropical atmosphere could improve the understanding of the MJO, the 
ability to validate current dynamical models, and perhaps the parameterization of these models.  
This is part of the mission of the Dynamics of the MJO experiment (DYNAMO; 
http://www.eol.ucar.edu/projects/dynamo/documents/WP_latest.pdf).   
 
 

Oceans 
 

As mentioned in Chapter 2, the oceans are a major source of predictability at 
intraseasonal to interannual timescales. The ocean provides a boundary for the atmosphere where 
heat, freshwater, momentum, and chemical constituents are exchanged.  Large heat losses and 
evaporation at the sea surface cause convection and make surface water sink into the interior,  
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FIGURE 3.1: Number of satellite observing systems available since 1989 and assimilated into 
the ECMWF system. Each color represents a different source/platform.  SOURCE:  Courtesy of 
Jean-Noel Thepaut, ECMWF. 
 
 
while surface heating and the addition of freshwater make surface water buoyant and resistant to 
mixing with deeper water.  

Variability in the air-sea fluxes, in oceanic currents and their transports, and in large-
scale propagating oceanic Rossby or Kelvin waves all contribute to the dynamics of the upper 
ocean and the sea surface temperature.  In turn, the states of the ocean surface and sub-surface 
can force the atmosphere on intraseasonal to interannual timescales, as is clearly evident in the 
ENSO and MJO phenomena. Therefore, the initialization of sea surface and sub-surface ocean 
state is required for near-term climate prediction. Unfortunately, the comprehensive observation 
of the global oceans started much later than in the atmosphere and even today there are 
challenges that prevent collection of routine observations over large parts of the ocean. 

The significant climatic impacts of ENSO, especially after the 1982–1983 event, 
demonstrated that a sustained, systematic, and comprehensive set of observations over the 
equatorial Pacific basin was needed. The TAO/Triangle Trans-Ocean Buoy Network (TRITON) 
array was developed during the 1985–1994 Tropical Ocean Global Atmosphere (TOGA) 
program (Hayes et al., 1991, McPhaden et al., 1998). The array spans one-third of the 
circumference of the globe at the equator and consists of 67 surface moorings plus five 
subsurface moorings. It was fully in place to capture the evolution of the 1997–1998 El Niño. In 
2000, the original set called TAO was renamed TAO/TRITON with the introduction of the 
TRITON moorings at 12 locations in the western Pacific (McPhaden et al., 2001). 
TAO/TRITON has been the dominant source of upper ocean temperature and in situ surface 
wind data near the equator in the Pacific over the past 25 years and has provided the 
observational underpinning for theoretical explanations of ENSO such as the recharged oscillator 
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(e.g. Jin, 1997). It provides a key constraint on initial conditions for seasonal forecasting at many 
centers around the world. 

After the success of the TAO/TRITON array, further moored buoy observing systems 
have been developed over the Atlantic (PIRATA) and Indian (RAMA) oceans under the Global 
Tropical Moored Buoy Array (GTMBA) program. The moorings allow simultaneous 
observations of surface meteorology, the air-sea exchanges of heat, freshwater, and momentum, 
and the vertical structure of temperature, salinity, horizontal velocity, and other variables in the 
water column.  Thus, they provide the means to monitor both the air-sea exchanges and the 
storage capacity of the upper ocean.  The PIRATA array was designed for the purpose of 
improving the understanding of ocean-atmosphere interactions that affect the regional patterns of 
climate variability in the tropical Atlantic basin (Servain et al., 1998). The array, launched in 
1997 and still being extended, currently has 17 permanent sites. The RAMA array was initiated 
in 2004 with the aim of improving our understanding of the east Africa, Asian, and Australian 
monsoon systems (McPhaden et al., 2009). It currently consists of 46 moorings spanning the 
width of the Indian Ocean between 15°N and 26°S. It is expected to be fully completed in 2012. 

The maintenance of the GTMBA is absolutely essential for supporting climate 
forecasting. However, there are many difficulties in maintaining these arrays, not the least of 
which is identifying institutional arrangements that can sustain the cost of these observing 
systems (McPhaden et al., 2010). Away from the equator, the permanent in situ moored arrays 
are sparser and address sample the characteristic extra-tropical regions of the ocean-atmosphere 
system under the international OceanSITES program. Few such sites exist in high latitude 
locations, but efforts are underway in the United States (under the National Science Foundation 
Ocean Observatories Initiative) and in other countries to add sustained high latitude ocean 
observing capability.  

In parallel to the development of the moored buoy arrays, the observation of SST has 
improved markedly over the last 20 years. SST is a fundamental variable for understanding the 
complex interactions between atmosphere and ocean. Since 1981, operational streams of satellite 
SST measurements have been put together with in situ measurements to form the modern SST 
observing systems (Donlon et al., 2009). Since 1999 more than 30 satellite missions capable of 
measuring SST in a variety of orbits (polar, low inclination, and geostationary) have been 
launched with infrared or passive microwave retrieval capabilities. New approaches to integrate 
remote sensing observations with in situ SST observations that help reduce bias errors are being 
taken (Zhang et al., 2009). 

Despite the evident progress, an important issue remains: satellite observations of SST 
only started in the 1980s and satellites have a relatively short life span. Therefore, further work is 
necessary to ensure the “climate quality” of the data over long periods. This would facilitate the 
generation of SST re-analysis products for operational seasonal forecasting (Donlon et al., 2009). 

Even with the evident progress made with the tropical moored buoy arrays and the 
improvement of the satellite measurements of SST, as recently as the late 1990s there were still 
vast gaps in observations of the subsurface ocean.  Such observations are needed for seasonal to 
interannual prediction.  The ability of the ocean to provide heat to the atmosphere, the extent to 
which the upper ocean can be perturbed by the surface forcing, and the dynamics of the ocean 
that lead to changes in the distribution of heat and freshwater all depend on the vertical and 
horizontal structure of the ocean and its currents.   

Surface height observations by satellite altimeters have added information about the 
density field in the ocean and thus, for example, the redistribution of water properties and mass 
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along the equator associated with ENSO.  Efforts to quantify the state of the ocean were further 
improved by the international implementation of the Argo profiling float program 
(http://www.argo.ucsd.edu/). Until then, most sub-surface ocean measurements were taken by 
expendable bathythermograph (XBT) probes measuring temperature versus depth and by 
shipboard profiling of salinity and temperature versus depth from research vessels, which are 
both limited in their global spatial coverage and depth. The Argo program was initiated in 1999 
with the aim of deploying a large array of profiling floats measuring temperature and salinity to 
1,500 to 2,000 meters deep and reporting in real time every 10 days. To achieve a 3° x 3° global 
spacing, 3,300 floats were required between 60°S and 60°N.  As of February 2009, there are 
3,325 active floats in the Argo array.  After excluding floats from which data was not passing the 
quality control and those in high latitudes (beyond 60° latitude) or in heavily sampled marginal 
seas, the number of floats is only 2,600.  Argo data is distributed via the internet without 
restriction and about 90% of the profiles are available within 24 hours of acquisition. Quality 
control continues after receipt of the data, particularly for the salinity observations. To improve 
the quality of data from Argo floats, ship-based hydrographic surveys obtaining salinity and 
temperature profiles are needed, and the process may require several years before the Argo data 
experts are confident that the best data quality has been achieved (Freeland et al., 2009).  
However, the real time Argo data is a critical contribution.  With it, the depth of the surface 
mixed layer can be mapped globally, thus determining the magnitude (depth and temperature) of 
the oceanic thermal reservoir in immediate contact with the atmosphere. 

Internationally, there is a coordinated effort under the Joint Commission on 
Oceanography and Marine Meteorology (JCOMM) of the World Meteorological Organization 
(WMO) and the International Oceanographic Commission (IOC) to coordinate sustained global 
ocean in situ observations, including Argo floats, surface SST drifters, Volunteer Observing 
Ship-based measurements, tropical moored arrays, and the extra-tropical moored buoys.  Remote 
observations of surface vector winds combined with drifting buoy data can be used to identify 
the wind-driven flow of the upper ocean, thus complementing the ability of Argo floats and 
altimetry to observe the density-driven flow.  Future satellite observations of interest include 
those of surface salinity. 

The in situ ocean observing community will benefit from an ongoing dialog with those 
interested in improving prediction on intraseasonal and interannual timescales. Programs such as 
the World Climate Research Programme’s (WCRP) CLIVAR work to coordinate sustained 
observations in the ocean with focused process studies that improve understanding of climate 
phenomena and processes.  Distributed and sustained ocean and air-sea heat flux observations 
with global and full depth coverage are being used to identify biases and errors in coupled and 
ocean models.  These include the surface buoys and associated moorings of OceanSITES and the 
repeat hydrographic survey lines done in each basin every 5–10 years.  The moorings provide 
high temporal resolution sampling from the air-sea interface to the seafloor, while the surveys 
map ocean properties along basin-wide sections.  Both programs provide data sets that quantify 
the structure and variability of the ocean that are often found in model fields.  In contrast, denser 
sampling arrays are deployed for a limited duration as part of process studies.  These studies are  
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FIGURE 3.2 Examples of the spatial distribution of various ocean observations mentioned in the 
text.  Top panel: Argo floats, which can provide surface and sub-surface information.  SOURCE: 
Argo website (http://www.argo.ucsd.edu/) Middle panel: Drifters, which can provide SST, SLP, 
wind, and salinity information (see colors in legend). SOURCE: NOAA 
(http://www.aoml.noaa.gov/phod/dac/gdp.html).  Bottom panel:  OceanSITES, intended for long-
term observations for depths up to 5000m in a stationary location. SOURCE: (OceanSITES 
http://www.jcommops.org/FTPRoot/OceanSITES/maps/200908_VISION.pdf) 
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designed to improve our understanding of physical processes and to aid in the parameterization 
of the processes not fully resolved by models.  CLIVAR also works to build connectivity among 
the observing community, researchers investigating ocean processes and dynamics, and climate 
modelers.  Process studies by CLIVAR and others add to understanding of ocean dynamics, 
develop improved parameterizations of processes not resolved in ocean models, and guide longer 
term investments in ocean observing. 
 
 

Land 
 

The land variables of potential relevance for seasonal prediction—the variables for which 
accurate initialization may prove fruitful—are soil moisture, snow, vegetation structure, water 
table depth, and land heat content.  These variables help determine fluxes of heat and moisture 
between the land and the atmosphere on large scales and thus may contribute to ISI forecasts. In 
addition, some of these variables are associated with local hydrology and hydrological prediction 
(e.g., observations of snow in a mountain watershed in the winter can provide information on 
spring water supply).  This evolution in the use of land and hydrological observations mirrors the 
emerging interest in new types of ocean observations, noted in the previous section. 

Despite their importance to the surface energy and moisture balances and fluxes, our 
ability to measure such land variables on a global scale is extremely limited.  Thus, alternative 
approaches for their global estimation have been, or still have to be, developed.  
  

 
Soil Moisture   
 
 Of the listed land variables, soil moisture (perhaps along with snow) is probably the most 
important for subseasonal to seasonal prediction.  For the prediction problem, however, direct 
measurements of soil moisture are limited in three important ways.  First, each in situ soil 
moisture measurement is a highly localized measurement and is not representative of the mean 
soil moisture across the spatial scale considered by a model used for seasonal forecasting.  
Second, even if a local measurement was representative of a model’s spatial grid scale, the 
global coverage of existing measurement sites would constitute only a small fraction of the 
Earth’s land area, with most sites limited to parts of Asia and small regions in North America.  
Finally, even if the spatial coverage were suddenly made complete, the temporal coverage would 
still be lacking; long historical time series (decadal or longer) may be needed to interpret a 
measurement properly before using it in a model. 
 Satellite retrievals offer the promise of global soil moisture data at non-local scales.  Data 
from the Scanning Multichannel Microwave Radiometer (SMMR) and Advanced Microwave 
Scanning Radiometer—Earth Observing System (AMSR-E) instruments, for example, have been 
processed into global soil moisture fields (Owe et al., 2001; Njoku et al., 2003).  Figure 3.3 
shows an example of the mean soil moisture as observed by the SMMR instrument.  Such 
instruments, however, can only capture soil moisture information in the top few millimeters of 
soil, whereas the soil moisture of relevance for seasonal prediction extends much deeper, through 
the root zone (perhaps a meter).  The usefulness of satellite soil moisture retrievals or their 
associated raw radiances will likely increase in the future as L-Band measurements come online  
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FIGURE 3.3  Mean soil moisture (m3/m3) in upper several millimeters of soil, as estimated via 
satellite with the SMMR instrument using the Owe et al. (2001) algorithm.  SOURCE: Adapted 
from Reichle et al. (2007). 
 
 
and data assimilation methods are further developed (see section on “Data Assimilation” in this 
chapter and the soil moisture case study in Chapter 4). 

Currently, global soil moisture information for model initialization has to be derived 
indirectly from other sources.  A common approach is to utilize the soil moisture produced by 
the atmospheric analysis already being used to generate the atmospheric initial conditions.  This 
approach has the advantage of convenience, and the soil moisture conditions that are produced 
reflect reasonable histories of atmospheric forcing, as generated during the analysis 
integrations—if the analysis says that May is a relatively rainy month, then the June 1 soil 
moisture conditions produced will be correspondingly wet. 
 The main meteorological driver of soil moisture, however, is precipitation, and analysis-
based precipitation estimates are far from perfect.  Thus, a more careful approach to using model 
integrations to generate soil moisture initial conditions has been developed in recent years.  This 
approach is commonly referred to as LDAS, for “Land Data Assimilation System”, although the 
term is something of a misnomer; true land data assimilation in the context of the land 
initialization problem is discussed further in the “Data Assimilation” section below.  LDAS 
systems are currently in use for some experimental real-time seasonal forecasts and are planned 
for imminent use in some official, operational seasonal forecasts. 

An operational LDAS system produces real-time estimates of soil moisture by forcing a 
global array of land model elements offline (i.e., disconnected from the host atmospheric model) 
with real-time observations of meteorological forcing.  (Here, real-time may mean several days 
to a week prior to the start of the forecast, to allow time for processing.)  Real-time atmospheric 
data assimilation systems are the only reasonable global-scale sources for such forcings as wind 
speed, air temperature, and humidity.  However, the evolution of the soil moisture state depends 
even more on precipitation and net radiation, whose reanalysis estimates are not reliable.  

SMMR (1979-87)
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Consequently, LDAS systems use alternative sources such as merged satellite-gauge 
precipitation products (e.g., CMAP, or the Climate Prediction Center Merged Analysis of 
Precipitation) and satellite-based radiation products (e.g., AFWA AGRMET, or Air Force 
Weather Agency Agricultural Meteorology Modeling System).  The LDAS system may still 
need atmospheric analysis data for the sub-diurnal time sequencing of the forcing, but the 
alternative data sources prove invaluable for “correcting” these precipitation and radiation time 
series so that their temporal-averages are realistic. 

Such LDAS systems also require global distributions of surface parameters (vegetation 
type, soil type, etc.), currently available in various forms (e.g., Rodell et al., 2004).  Consistency 
between the parameter set used for the LDAS system and that used for the full forecast system is 
an important consideration. 
 
 
Snow  
 
 Real-time direct measurements of snow on the global scale do not exist, though some 
measurements are available at specific sites, for example, in the western United States 
(Snowpack Telemetry, SNOTEL) and through coded synoptic measurements made at weather 
stations (SYNOP).  For global data coverage, satellite measurements are promising—certain 
instruments (e.g., MODIS) can estimate snow cover accurately at high resolution on a global 
scale.  Satellite snow retrievals, however, also show significant limitations.  For the seasonal 
forecasting problem, snow cover is not as important as snow water equivalent (SWE), which is 
the amount of water that would be produced if the snowpack were completely melted.  Satellite 
estimates of SWE are made difficult by the sensitivity of the retrieved radiances to the 
morphology (crystalline structure) of the snow, which is almost impossible to estimate a priori—
a given snowpack may have numerous vertical layers with different crystalline structures, 
reflecting the evolution of the snowpack with time through compaction and melt/refreeze 
processes.  Compounding the difficulty of estimating SWE from space are spatial heterogeneities 
in snowpack associated with topography and vegetation. 
 The LDAS approach described above can provide SWE in addition to soil moisture 
states, assuming the land model used employs an adequate treatment of snow physics.  In the 
future, the merging of LDAS products with the available in situ snow depth information and 
satellite-based snow data in the context of true data assimilation (see “Data Assimilation” 
section) will likely provide the best global snow initialization for operational forecasts. 
 
 
Vegetation Structure  
 

Current operational seasonal forecast models treat vegetation as a boundary condition, 
with prescribed time-invariant vegetation distributions and (often) prescribed seasonal cycles of 
vegetation phenology, e.g., leaf area index (LAI), greenness fraction, and root distributions.  
Early forecast systems relied on surface surveys of these quantities, and modern ones generally 
rely on satellite-based estimates. 

Reliable dynamic vegetation modules would, for the seasonal prediction problem, allow 
the initialization and subsequent evolution of phenological prognostic variables such as LAI and 
rooting structure.  A drought stressed region, for example, might be initialized with less leafy 
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trees, with subsequent impacts on surface evapotranspiration, and the leaf deficit would only 
recover if the forecast brought the climate into a wetter regime.  However, the use of dynamic 
vegetation models in seasonal forecasts is not on the immediate horizon for forecast centers, in 
light of other priorities and the need to develop these models further. 

 
 
Water Table Depth 
 

The use of water table depth information in historical and current operational systems is 
prevented by two things.  First, outside of a handful of well-instrumented sites, such information 
does not exist (though GRACE satellite measurements of gravity anomalies can provide useful 
information at large scales); the global initialization of water table depth given current 
measurement programs is currently untenable.  Second, even if such observations were available, 
land surface models used in current seasonal forecasting systems do not model variations in 
moisture deeper than a few meters below the surface, so that the observations, if they did exist, 
could not be used.  The lack of deep water table variables in the models also prevents the 
estimation of water table depth through the LDAS approach.  Given the long time scales 
associated with the water table, improvements in its measurement and modeling do have the 
potential to contribute to ISI prediction. 

 
 
Soil Heat Content  
 

Real-time in situ measurements of subsurface heat content are spotty at best and far from 
adequate for the initialization of a global-scale forecast system.  Satellite data have limited 
penetration depth; they can only provide estimates of surface skin temperature.  Global 
initialization of subsurface heat content can thus be accomplished in only two ways: (1) through 
an LDAS system, as described above, and (2) through a land data assimilation approach that 
combines the LDAS system information with observations of variables such as soil moisture, 
snow, and skin temperature.  For maximum effectiveness, the land models utilized in these 
systems need to include temperature state variables representing at least the depth of the annual 
temperature cycle (i.e., a few meters). 
 
 
Polar Ice 
 
 Polar regions are important components of the climate system.  The most important 
parameters are those that influence the exchange of heat, mass, and momentum with the 
atmosphere and global oceans.  NASA, NOAA, and DOE have polar-orbiting satellites that are 
collecting relevant data in the Arctic region.  The National Snow and Ice Data Center 
(http://nsidc.org/) is supported by NOAA, NSF, and NASA to manage and distribute cryosphere 
data.  The National Ice Center (http://www.natice.noaa.gov/) is funded by the Navy, NOAA, and 
the Coast Guard to provide snow, ice (ice extent, ice edge location), and iceberg products in the 
Arctic and in the Antarctic.   

The NRC Report Towards an Integrated Arctic Observing System (NRC, 2006) 
advocated observation of “Key Variables” using in situ and remote sensing methods.  These 
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include albedo; elevation/bathymetry; ice thickness, extent, and concentration; precipitation; 
radiation; salinity; snow depth/water equivalent; soil moisture; temperature; velocity; humidity; 
freshwater flux; lake level; sea level; aerosol concentration; and land cover.  Observing methods 
and recommendations are reviewed and presented in the Cryosphere Theme Report of the 
Integrated Global Observing System (IGOS 2007).  Their cryospheric plan includes satellite-
based, ground-based, and aircraft-based observations together with data management and 
modeling, assimilation, and reanalysis systems.   

In terms of monitoring climate variability and change and weather and climate prediction, 
these reports identify the priority cryosphere observations as: long-term consistent records of 
cryosphere variables, high spatial and temporal resolution fields of snowfall, snow water 
equivalent, snow depth, albedo and temperature, and mapping of permafrost and frozen soil, lake 
and sea ice characteristics.  Remote sensing methods can be used to address sea ice extent 
(recorded since the late 1970s) and ice thickness (recorded more recently, with IceSat) in order to 
investigate ice mass balance and the movement.  Aerial sea ice reconnaissance needs to continue.  
Relevant in situ methods include the use of autonomous underwater vehicles (AUVs), moorings, 
and automated weather stations. 
 More specific recommendations are provided by Dickson et al. (2009), who assert that 
climate models do not represent Arctic processes well, limiting our ability to understand change 
in the Arctic seas and the impact of that change on climate.  They also advocate that observations 
are needed for the Norwegian Atlantic current transport of heat, salt, and mass into the Arctic 
Ocean and of the amounts that enter by the Fram Strait and the Barents Sea; the change in sea ice 
in response to inflows into the Arctic of warmer water; the change and variability in temperature 
and salinity profiles beneath the ice, as by Ice-Tethered Profilers (ITPs); and, in general, all 
quantities relevant to the estimation of ocean-atmosphere heat exchange in the Arctic.  For 
improving sea ice prediction, Dickson et al. (2009) recommends improved sea ice thickness 
measurements, especially in the spring.  Such improved measurements could be obtained from 
below and above the ice as well as on the ice, using (for example) laser and radar altimetry, 
tiltmeter buoys on the ice surface, and floats or moorings below the ice with upward looking 
sonars.  
 
 

STATISTICAL MODELS 
 

Statistical and dynamical predictions are complementary.  Advances in statistical 
prediction are often associated with enhanced understanding, which may lead to improved 
dynamic prediction, and vice versa. In addition, both techniques can ultimately be combined to 
provide better guidance for decision support. 
 
 

Linear Models 
 

What follows is a description of techniques used in statistical prediction models. Many of 
these techniques are similar to validation schemes for numerical models, for which the strengths 
and weaknesses are shown in Table 2.1. Also, a more in-depth description is provided in 
Appendix A.  
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Correlation and Regression 
 

There is a long history of using correlation patterns to identify teleconnections, beginning 
with the landmark Southern Oscillation studies of Walker in the early 20th century (Katz, 2002) 
and increasing exponentially since (e.g., Blackmon et al., 1984; Wallace and Gutzler, 1981).  
The idea of teleconnections in meteorology is tied closely to that of correlations.  Base points in 
locations, such as the center of the Nino3.4 box (Hanley et al., 2003), have served as the origin 
for teleconnection analysis throughout the globe (Ding and Wang, 2005) and have formed the 
basis for forecast quality (Johansson et al., 1998).  The relationships between two locations can 
be calculated by measuring the mean squared error between the base point and the remote 
location.  Large correlations correspond to a large degree of covariability and a correspondingly 
small mean squared error.  Linear regression is an extension of correlation where directionality is 
assumed in diagnosing relationships between a predictor variable and a response variable or 
predictand.  

Most often, the variance of the response variable is partitioned into components that are 
explained or unexplained by the predictor.  The coefficient of determination (known as R2) gives 
the amount of variance explained by the predictor and is often used to assess the goodness of fit 
for a given model, though it has been criticized as a forecast performance index for verification 
as it ignores bias (Murphy, 1995).  If the assumptions regarding the distribution of the data are 
met, significance of the model parameters can be assessed through t-tests.  In cases when the 
assumptions are not met, bootstrapping of the (x,y) pairs or the model residuals has been shown 
to be effective (Efron and Tibshirani, 1993). 
 Often the problems addressed by regression require multiple predictors to give 
meaningful answers.  The statistical model, multiple regression, is a generalization of simple 
regression.  Rather than pairs of data measured simultaneously, n-tuples of data are used where 
all of the predictors, x1, x2, . . . ,xm and the predictand, y, form the training data that are observed 
over n cases.  
 Historically, the most common application of regression methodology has been for 
relating numerical model output to some predictand at a future time using linear regression.  The 
method is called “model output statistics” (MOS) by Glahn and Lowry (1972).  This is related to 
another regression technique, known as the perfect prog (PP) method (Klein et al., 1959) where 
both predictors and response variables are observed quantities in the training dataset.  These 
methods are popular, as they utilize information at relatively larger scales to represent sub grid 
scale processes.  MOS has the advantage over PP of correcting for forecast model biases in the 
mean and variance.  The disadvantages of MOS include rebuilding the equations with changes in 
models and assimilation systems.  Brunet et al. (1988) offer detailed comments on the relative 
advantages of each method, claiming PP was superior for shorter-range forecasts and MOS for 
longer time leads.  
 When cross-correlations are used to establish relationships between two non-adjacent 
locations, the maps of correlations are termed teleconnections.  The earliest instance of using 
such a methodology was to establish the correlation structure of the Southern Oscillation 
(Walker, 1923).  Maps of teleconnectivity at widely separated locations at a given geopotential 
height have been constructed to establish the centers of action of various modes in the mid-
troposphere (Wallace and Gutzler, 1981).  A catalogue of such teleconnections, based on  
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FIGURE 3.4  Example of two teleconnection patterns (North Atlantic Oscillation (NAO); Pacifc-
North American pattern (PNA)), shown as anomalies in the 500-hPa geopotential height field.  
Dark shading indicates negative anomalies, and light shading indicates positive anomalies.The 
patterns emerge from a rotated Empirical Orthogonal Function analysis of monthly mean 500-
hPa geopotential heights.  Contour interval is 10 m. SOURCE:  Johansson (2007).  
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principal component loadings (used to summarize the linked regions) was created by Barnston 
and Livezey (1987).  
 
 
Empirical Orthogonal Functions (EOF)/Principal Component Analysis (PCA) 
 
 The use of eigentechniques was pioneered by Pearson (1902) and formalized by 
Hotelling (1933).  The key ideas behind eigentechniques are to take a high dimensional problem 
that has structure (often defined as a high degree of correlation) and establish a lower 
dimensional problem where a new set of variables (e.g., eigenvectors) can form a basis set to 
reconstruct a large amount of the variation in the original data set.  In terms of information 
theory, the goal is to capture as much signal as possible and omit as much noise as possible.  
While that is not always realized, the low dimensional representation of a problem often leads to 
useful results.  Assuming that the correlation or covariance matrix is positive semidefinite in the 
real domain, the eigenvalues of that matrix can be ordered in descending value to establish the 
relative importance of the associated eigenvectors.  Sometimes the leading eigenvector is related 
to some important aspect of the system.  However, modes beyond the first are rarely related to 
specific physical phenomena owing to the orthogonality imposed on the EOFs/PCs.  One 
possibility is to transform the leading PCs to an alternate basis set.  This process is known as PC 
rotation (Horel, 1981; Richman, 1986; Barnston and Livezey, 1987) and has been shown to offer 
increased stability and isolation of patterns that match more closely to their parent correlation (or 
covariance) matrix.  For example, in Figure 3.4, the rotated EOFs that are derived from monthly 
500-hPa geopotential height data define two teleconnection patterns, the North Atlantic 
Oscillation (NAO) and the Pacific North American (PNA) pattern. These patterns explain a 
relatively large portion of the variance in the 500-hPa geopotential height data and can be related 
to the large-scale dynamics of the atmosphere as well as incidences of extreme weather in certain 
locations.  In cases where the data lie in a complex domain, eigenvectors can be extracted in 
“complex EOFs.”  Such EOFs can give information on travelling waves, under certain 
circumstances, as can alternative EOF techniques that incorporate times lags to calculate the 
correlation matrix (Branstator, 1987).  As was the situation for correlation analysis, EOF/PCA 
are data compression methods.  They do not relate predictors to response variables. 
 
 
Canonical Correlation Analysis(CCA)/Singular Value Decomposition (SVD)/Redundancy 
Analysis (RA)  
 
 A multivariate extension of linear regression is canonical correlation analysis (CCA).  It 
can be thought of as multiple regression where there is more than one predictor (x1, x2,…, xm) 
and multiple response variables (y1, y2,…,yp).  Consequently, CCA is useful for prediction of 
multiple modes of variability associated with climate forcing (Barnston and Ropelewski, 1992).  
The goal of CCA is to isolate important coupled modes between two geophysical fields.  
Singular value decomposition (SVD) is analogous to CCA when applied to an augmented 
covariance matrix.  Despite the similarity, Cherry (1996) argues that the techniques have 
different goals.  Both techniques can lead to spurious patterns (Newman and Sardeshmukh, 
1995), particularly when the observations are not independent and the cross-correlations/cross-
covariances are weak relative to the correlations within the x’s and y’s.  In such cases, pre- 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

70 Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 
 

 

 
FIGURE 3.5: Patterns relating errors in SST to errors in precipitation.  Dark gray areas in the 
ocean indicate areas of “warm” errors; lighter shading indicates “cold” errors.  Over land, dark 
gray indicates “wet” errors; lighter shading indicates “dry” errors that accompany the pattern of 
errors in SST.  Contours are in normalized units, with a 0.1 contour interval. SOURCE: Goddard 
and Mason (2002).  
 
 
filtering the predictors and response variables with EOF or PCA may have benefits (Livezey and 
Smith, 1999).  Given the oversampling in time and space of most climate applications, PCA is 
often used as the initial step to establish a low dimensional set of uncorrelated basis vectors 
subject to CCA (Barnett and Preisendorfer, 1987).  Despite the potential pitfalls, CCA has been 
shown to exhibit considerable skill for long-range climate forecasting (Barnston and He, 1996) 
and is one of the favored techniques for relating teleconnections to climate anomalies.  Figure 
3.5 shows an example of how CCA has been used to relate errors in SST in the tropical Atlantic 
Ocean to errors in model-produced estimates of precipitation in parts of Africa.  Recently, 
redundancy analysis (RA), a more formal modeling approach based on regression and CCA, has 
been applied successfully to find coupled climate patterns useful in statistical downscaling 
(Tippett et al., 2008).   
 
 
Constructed Analogues 
 
 Natural analogues are unlikely to occur in high degree-of-freedom processes (see Table 
2.1 regarding historical use of analogues in prediction).  In reaction to this, van den Dool (1994) 
created the idea of constructing an analogue having greater similarity than the best natural 
analogue.  The construction is a linear combination of past observed anomaly patterns in the 
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predictor fields such that the combination is as close as desired to the initial state.  Often, the 
predictor (the analogue selection criterion) is based on a reconstruction from the leading 
eigenmodes of the data field at a number of periods prior to forecast time.  The constructed 
analogue approach has been used successfully to forecast at lead times of up to a year (van den 
Dool et al., 2003) and usually outperforms natural analogues forecasting one meteorological 
variable from another contemporaneously.  A constructed analogue yields a single linear 
operator derived from data by which the system can be propagated forward in time. 
 
 

Nonlinear Models 
 

Most of the linear tools have nonlinear counterparts.  Careful analysis of the data will 
reveal the degree of linearity.  Additionally, comparison of the skill for linear versus nonlinear 
counterparts will reveal the degree of additional information to be gained by nonlinear methods.  
Specific recommendations on techniques to apply are given in Haupt et al. (2009). 
 
 
Logistic Regression 
 
 Logistic regression is a nonlinear extension of linear regression for predicting 
dichotomous events as the response variable.  The function that maps the predictor to the 
response variable is called the logistic response function, which is a monotonic function ranging 
from zero to one10.  This involves minimizing the loss function using a nonlinear procedure.  
Logistic regression has been applied successfully to problems such as precipitation forecasting 
(Applequist et al., 2002), medium range ensemble forecasts (Hamill et al., 2004), and blocking 
beyond two weeks (Watson and Colucci, 2002). 
 
 
Artificial Neural Networks (ANN) 
 
 Artificial Neural networks (ANNs) have been applied successfully to numerous 
prediction problems, including ENSO (Tangang et al., 1998) and precipitation forecasts from 
teleconnection patterns (Silverman and Dracup, 2000).  An ANN is composed of an input layer 
of neurons, one or more hidden layers, and an output layer. Each layer comprises multiple units 
connected completely with the next layer, with an independent weight attached to each 
connection. The number of nodes in the hidden layer(s) is dependent on the process being 
modeled and is determined by trial and error.  Such models require considerable investigator 
supervision to train as nonlinear techniques are prone to overfitting noise (finding solutions at 
local minima).  During the training process the error between the desired output and the 
calculated output is propagated back through the network.  The goal is to find the network 
architecture that generalizes best.  
 
 

                                                 10 The logistic response function is not simply an arbitrary monotonic function.  It also follows a 
sigmoidal surface, which has an “S” shape when compared to a linear monotonic function. 
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Support Vector Machines (SVM) 
 
 Support vector machines (SVM) are a form of supervised learning techniques that use 
kernels to arrive at solutions at the global minimum or generalization error.  For data existing in 
high dimensional space, SVM will separate the data into several subsets, attempting to achieve 
an optimal linear separation.  This can be useful for noisy data sets. 

SVM have been applied to cloud classification problems (Lee et al, 2004), wind 
prediction (Mercer at al., 2008) and severe weather outbreaks (Mercer et al., 2009).  Comparison 
of SVM to standard logistic regression in Mercer et al. (2009) suggests that SVM is equal or 
superior to the more traditional techniques in minimizing misclassification of forecasts.  On the 
ISI time scale, Lima et al. (2009) have shown that kernelized methods lead to additional skill in 
ENSO forecasts over traditional PCA techniques 
 

 
 
FIGURE 3.6 Schematic of an Artificial Neural Network (ANN) for forecasting rainfall from 
radar data.  The network is composed of “nodes” (circles) that are linked by “weights” (arrows).  
The number of hidden layers and number of nodes in each layer can be specified by the user, or 
determined through experimentation.  Weights are determined by training the network on a 
subset of the data. SOURCE: Figure 2 from Trafalis et al. (2005). 
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Composites  
 
 Determination of climate system processes often involves univariate or bivariate displays 
of the slowly varying forcing (e.g., ENSO, MJO).  Investigating how such signal propagates 
through the climate system can be accomplished through correlation or regression.  These 
approaches are unconditional as all the data are used to establish the pertinent relationships.  
Another possibility is to condition the relationships on subsets of time when the climate system 
is in a given state.  Such states are termed composites.  A key aspect of creating these states is to 
measure the intra-state variability to ensure that all cases assigned to a given state have 
commonality.  The quality of a composite is often tested by calculating the means of each group 
to insure adequate separation.  Relating climate linkages to such composites is commonly 
performed to relate forcing to effects in climate studies (e.g., Ferranti et al. 1990; Hendon and 
Salby 1994; Myers and Waliser, 2003; Tian et al. 2007 for the MJO).  Most often, correlations 
are used to establish the linkages, although comparisons can be based on linear or nonlinear 
statistics.  
 Figure 3.7 provides an example of how composites can distinguish, better than linear 
methods, anomalous precipitation patterns in the continental United States associated with the 
SST anomalies in the tropical Pacific Ocean.  The figure shows that the patterns of precipitation 
associated with warmer-than-average SST are not necessarily “mirror images” of the patterns of 
precipitation associated with colder-than-average SST.  For example, for the warmer-than-
average SST composite, areas of the Midwest exhibit significantly drier-than-average conditions 
during March, while the Great Plains experience wetter-than-average conditions (third row, left 
column).  By comparison, the composite representing precipitation associated with colder-than-
average SST shows near-average conditions for much of the Midwest, with significantly drier-
than-average conditions across the Great Plains (third row, right column). 

 
 

DYNAMICAL MODELS  
  

With the advent of computers, it became feasible to solve the fluid dynamical equations 
representing the atmosphere and the ocean using a three-dimensional gridded representation. 
Physical processes that could not be resolved by this representation, such as turbulence, were 
parameterized using additional equations. The computer software that solves this set of equations 
is referred to as a dynamical or numerical model. The earliest dynamical models were developed 
for the atmosphere for the purposes of weather forecasting, and dynamical (or physical) models 
for other components of the climate system (land, ocean, etc.) followed thereafter. 
 
 

Evolution of Dynamical ISI Prediction  
 

Some of the earliest attempts at making ISI predictions with dynamical models were 
performed to essentially extend the range of weather forecasts. Miyakoda et al. (1969) described 
two-week predictions made with a hemispheric general circulation model (GCM).  Miyakoda et 
al. (1983) used an atmospheric general circulation model (AGCM) with a horizontal resolution 
of 3–4 degrees and 9 levels in the vertical, which was the state of the art for weather forecasting 
at the time. Their study used a 30-day prediction to forecast a blocking event that occurred  



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

74 Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 
 

 

 
 
FIGURE 3.7.  Composites of monthly-mean precipitation anomalies associated with months 
experiencing warm SST (left column) or cold SST (right column) in the tropical Pacific for 
January through April.  These maps illustrate that opposite signed SST anomalies do not 
necessarily produce opposite signed precipitation anomalies (e.g., the areas experiencing wetter-
than-average conditions when SST is warm are not necessarily drier-than-average when SST is 
cold, and vice versa).  Contour interval is 10 mm of precipitation; solid contours are for wet 
anomalies; dashed contours are for dry anomalies.  Shading indicates areas of statistical 
significance.  SOURCE:  Adapted from Livezey et al. (1997). 

 
 

during January 1977. The success of the prediction was attributed to improved spatial resolution 
and better representation of subgrid-scale processes.  

Extended range numerical predictions of this sort were referred to as dynamical extended 
range forecasting (DERF) to distinguish them from short and medium range weather forecasts. 
The numerical models used for extended range forecasts were the same AGCMs that were then 
being used for weather forecasting. These AGCMs solved the basic three-dimensional fluid 
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dynamical equations numerically, using either finite-differencing or spectral decomposition. The 
AGCMs also incorporated physical parameterizations of shortwave and longwave radiation, 
moist convection, boundary layer processes, and subgrid-scale turbulent mixing. The complexity 
and resolution of these AGCMs increased throughout the 1990s in concert with computing 
power and understanding.  
 Although the DERF activities had some limited successes, they were barely scratching 
the surface of short-term climate prediction, in part because some processes were still poorly 
represented (e.g., MJO, see Chen and Alpert, 1990; Lau and Chang, 1992; Jones et al., 2000; 
Hendon et al., 2000) and there was no coupling to the ocean. One of the premises of the DERF 
approach was that there was enough information in the atmospheric initial conditions to make 
useful extended range predictions. In the terminology of Lorenz (1975), this would be 
predictability derived from knowledge of the initial condition. Because of the rapid decay of 
quality with lead time, one would not expect useful predictions on seasonal or longer time scales 
to arise solely from atmospheric initial conditions.  To obtain forecast quality on longer 
timescales, one has to consider predictability arising from the knowledge of the evolution of 
boundary conditions or external forcing11 (Lorenz, 1975; Charney and Shukla, 1981). 
 One of the most important boundary conditions for an atmospheric model is sea surface 
temperature (SST).  Variations in SST can heat or cool the atmosphere, influence the rainfall 
patterns, and thus change the atmospheric circulation. This is especially obvious in the tropical 
Pacific, where strong SST anomalies associated with the El Niño -Southern Oscillation (ENSO) 
phenomenon significantly alter atmospheric convection patterns. Although more subtle, and 
secondary to the initial conditions of the diabatic heating and circulation structure, SST as a 
boundary condition for properly initiating the MJO is also expected to be important (e.g., 
Krishnamurti et al., 1988; Zheng et al., 2004; Fu et al., 2006).  The evolution in diabatic heating 
associated with ENSO and MJO events affects not only the local atmospheric circulation over 
the tropics, but also affects atmospheric circulation in extratropical regions such as North 
America through teleconnections (Wallace and Gutzler, 1981; Hoskins and Karoly, 1981; 
Weickmann et al., 1985; Ferranti et al. 1990).  

The link between tropical Pacific SST and atmospheric anomalies elsewhere makes 
prediction of ENSO valuable for climate predictions in many remote regions.  It is a continuing 
challenge to characterize this link (i.e., how a particular SST anomaly or evolution of anomalies 
may affect a given, remote location), especially given the complex interactions among local and 
remote processes that can contribute to predictability in a particular location.  Better 
characterization of the link between ENSO (and other processes that affect boundary conditions 
for large-scale circulation) and the climate of remote locations is an important component for 
translating ISI forecasts into quantities useful for decision-makers (see “Use of Forecasts” 
section in this chapter).  
 In order to exploit atmospheric predictability associated with ENSO, one has to predict 
the SST in the tropical Pacific. The quasi-periodic nature of ENSO, with enhanced spectral 
power in the 4–7 year band, suggested that useful predictions might be possible months or 
seasons in advance. The next major step in short-term climate prediction came about when Cane 
et al. (1986) used a simple model of ENSO, a one-layer ocean representing the thermocline and a 
simple Gill-type model for the atmosphere, to make numerical predictions of ENSO events. 

                                                 
11 It is possible that initial conditions of long-lived stratospheric phenomena could lead to long lead time 
skill, but this has yet to be demonstrated. 
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 Successful predictions with the Cane-Zebiak model shifted the focus of short-term 
climate prediction to ENSO forecasting. ENSO is associated with much of the forecast quality at 
global scales in current forecast systems on seasonal to interannual timescales, although some 
other phenomena may dominate in specific regions. The type of model used by Cane and Zebiak 
is referred to as an Intermediate Coupled Model (ICM), because the atmospheric and the oceanic 
model are highly simplified. Following the success of the ICM approach, more sophisticated 
techniques were developed for ENSO prediction. One was the Hybrid Coupled Model (HCM) 
approach, where the atmospheric model remained simple but the one-layer ocean model was 
replaced by a comprehensive ocean general circulation model (OGCM). Neither the ICM nor the 
HCM approaches produced useful predictions of atmospheric quantities over continents. 
Therefore, a two-tier approach was used to produce climate forecasts over land. The SSTs 
predicted by the ICM/HCM (Tier 1) were used as the boundary condition for AGCM predictions 
(Tier 2). 
 Another approach to ENSO prediction was the use of a comprehensive coupled GCM 
(CGCM), where an AGCM is coupled to an ocean GCM, with the two models exchanging fluxes 
of  momentum, heat, and freshwater. CGCMs were originally developed for studying long term 
(centennial) climate change associated with increasing greenhouse gas concentrations. CGCMs 
used for climate change used coarse spatial resolution to facilitate multi-century integrations. 
The shorter integrations required for ENSO prediction allowed finer spatial resolution, especially 
in the ocean, which could better resolve the processes important for ENSO. Finer resolution in 
the atmosphere improved forecast quality over the continents without requiring a two-tier 
approach. The quality of ENSO predictions in a CGCM arises almost exclusively from initial 
conditions in the upper ocean. 
 The major modeling/forecasting centers began to use CGCMs for ENSO prediction in the 
1990s (Ji and Kousky, 1996; Rosati et al., 1997; Stockdale et al., 1998; Schneider et al., 1999) 
although the two-tier approach continued to be used operationally to predict the associated 
terrestrial climate. Atmospheric model resolution was initially about 2–4 degrees in the 
horizontal and the ocean model resolution was 1–2 degrees, often with substantially finer 
meridional resolution near the equator. Initial conditions were derived from an ocean data 
assimilation system. 
 Early attempts to use CGCMs for ENSO prediction fared poorly when compared to the 
ICM/HCM approaches or statistical techniques. CGCM predictions for ENSO suffered from 
“climate drift,” where the model prediction evolved from the “realistic” initial condition to its 
own equilibrium climate state. This led to a rapid loss in quality for ENSO predictions. Statistical 
corrections applied a posteriori (Model Output Statistics, see “Correlation and Regression” 
section in this chapter) had only limited efficacy in arresting this loss of quality. Anomaly 
coupling strategies, where the atmospheric and oceanic models exchange only anomalous fluxes, 
were also used (Kirtman et al., 1997), but did not address the underlying deficiencies of the 
component models. 
 Over the last decade, the ENSO forecast quality associated with CGCMs has improved 
significantly. Reductions in the model bias and improved ocean initial conditions have now 
enabled CGCMs to be competitive with statistical models. An important development has been 
the use of multi-model ensembles (MME), where predictions from a number of different CGCMs 
are combined to produce the final forecasts (Krishnamurti et al., 2000; Rajagopalan et al., 2002; 
Robertson et al., 2004; Hagedorn et al., 2005). The Development of a European Multi-model 
Ensemble System for Seasonal to Interannual Prediction (DEMETER) project included seasonal 
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predictions from seven different CGCMs, with atmospheric horizontal resolutions ranging from 
T42–T63 and oceanic horizontal resolution in the 1–2 degree range (Palmer et al., 2004). The 
MME forecast quality of the DEMETER ensemble (and other ensembles) beats the quality of 
any single CGCM that is part of the ensemble (Palmer et al., 2004; Jin et al., 2008). The MME 
anomaly correlation skill of Nino3.4 at 6 month lead time is 0.86 in the ensemble considered by 
Jin et al. (2008), with individual models showing lower correlations (some as low as 0.6). 

In terms of intraseasonal and MJO prediction, evaluating and incorporating the role of 
ocean coupling has evolved somewhat independently.  Given the shorter time scale relative to 
ENSO, the interaction with SST has been found to be mostly limited to the ocean mixed-layer 
(e.g, Lau and Sui, 1997; Zhang, 1996; Hendon and Glick, 1997).  A number of model studies 
have indicated improvement in MJO simulation and prediction by incorporating SST coupling of 
various levels of sophistication (e.g., Waliser et al., 1999b; Fu et al., 2003; Zheng et al., 2004; 
Woolnough et al., 2007; Pegion and Kirtman, 2008). 
 
 

Current Dynamical ISI Forecast Systems 
 

Currently, CGCMs serve as the primary tool for dynamical ISI prediction.  Improvements 
in atmospheric model resolution mean that it is no longer necessary to use a two-tiered approach 
for ISI prediction. In operational forecasting centers, CGCMs are used in conjunction with 
sophisticated data assimilation systems and statistical post-processing to produce the final 
forecasts. Typically, the atmospheric component of a CGCM is a coarse-resolution version of the 
AGCM used for short-term weather forecasts. A CGCM also includes a land component (as part 
of the AGCM), an ocean component, and optionally a sea ice component (Figure 3.8). CGCMs 
also include a comprehensive suite of physical parameterizations to represent processes such as 
convection, clouds, and turbulent mixing that are not resolved by the component models. In this 
section, we provide a brief overview of the state-of-the-art in model resolution for CGCMs used 
for ISI prediction at two of the major operational forecasting centers, NCEP and ECMWF. 

The atmospheric component of the NCEP Climate Forecast System (CFS) (Saha et al., 
2006), which became operational in August 2004, currently has a horizontal resolution of 200 
km (T62) with 64 levels in the vertical.  It is scheduled to have a six-fold increase in horizontal 
resolution in 2010. The oceanic component of the CFS is derived from the GFDL Modular 
Ocean Model version 3 (MOM3), which is a finite difference version of the ocean primitive 
equations with Boussinesq and hydrostatic approximations. The ocean domain is quasi-global 
extending from 74°S to 64°N, with a longitudinal resolution of 1° and a latitudinal resolution that 
varies smoothly from 1/3° near the equator to 1° poleward of 30°. The model has 50 vertical 
levels, with spacing between levels (resolution) ranging from 10 m near the surface to over 500 
m in the bottom level. The atmospheric and oceanic components exchange fluxes of momentum, 
heat, and freshwater daily, with no flux correction. Soil hydrology is parameterized using a 
simple two-layer model. Sea ice extent is prescribed from observed climatology. 

At ECMWF, the current generation of the Seasonal Forecasting System (v3) has an 
atmospheric model with a horizontal resolution of 120 km (T159), with 62 levels in the vertical 
(http://www.ecmwf.int/products/changes/system3/). In contrast, the current operational 
deterministic weather prediction AGCM used by ECMWF has a resolution of 16 km and 91 
vertical levels. The ocean model has a longitudinal resolution of 1.4° and a latitudinal resolution 
that varies smoothly from 0.3° near the equator to 1.4° poleward of 30°. There are 29 levels in  
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FIGURE 3.8 Schematic of a coupled general circulation model illustrating the horizontal/vertical 
grid, the different components (atmosphere, land, ocean), important physical processes, and air-
sea flux exchange. SOURCE:  NOAA. 

 
 

the vertical.  A tiled land surface scheme (HTESSEL) is used to parameterize surface fluxes over 
land. Sea ice is handled though a combination of persistence and relaxation to climatology. 
 Systematic errors are found in the mean state, the annual cycle, and ISI variance of 
climate simulations in the current generation of CGCMs (Gleckler et al., 2008). Model errors in 
the tropical Pacific, such as a cold SST bias or a ‘double’ Inter-tropical Convergence Zone, are 
particularly troublesome because they impact phenomena such as ENSO and the MJO that are 
important for ISI prediction. Indeed, the models often exhibit significant errors in the simulation 
of spatial structure, frequency, and amplitude of ENSO and the MJO. These errors lead to the 
degradation of ISI prediction quality in CGCMs. Although some of the systematic errors can be 
attributed to poor horizontal resolution of the CGCMs, other errors are attributable to 
deficiencies in the subgrid-scale parameterizations of unresolved atmospheric processes such as 
moist convection, boundary layers and clouds, as well as poorly resolved oceanic processes such 
as upwelling in the coastal regions. Improvements in both model resolution and subgrid-scale 
parameterizations are needed to address these problems. 
 

Multi-Model Ensembles 
 

As mentioned above, one source of error in dynamical seasonal prediction comes from 
the uncertainties arising from the physical parameterization schemes. Such uncertainties and 
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errors may be, to some extent, uncorrelated among models. A multi-model ensemble (MME) 
strategy may be the best current approach for adequately resolving this aspect of forecast 
uncertainty (Palmer et al., 2004; Hagedorn et al., 2005; Doblas-Reyes et al., 2005; Wang et al., 
2008; Kirtman and Min, 2009; Jin et al., 2009)12. Figure 3.9 demonstrates how a multi-model 
ensemble can outperform the individual models that are used to form the ensemble.  The MME 
strategy is a practical and relatively simple approach for quantifying forecast uncertainty. In fact, 
as argued in Palmer et al. (2004), Kirtman and Min (2009) and a number of studies using the 
DEMETER seasonal prediction archive and the APCC/CliPAS seasonal prediction archive, the 
multi-model approach appears to outperform any individual model using a standard single model 
approach (e.g., Jin et al., 2009; Wang et al., 2009).  Although the “standard” MME approach 
applying equal weights to each model is relatively straightforward to implement, it has some 
shortcomings. For example, the choice of which models to include in the MME strategy is in 
practice ad-hoc and is limited by the “available” models. It is unknown whether the available 
models are in any sense optimal. Indeed, it is an open question as to whether more sophisticated 
single model methods such as perturbed parameters or stochastic physics will out perform MME 
strategies.   

Developing alternative methodologies for combining the models can be challenging since 
the hindcast records for CGCMs used to assign weightings to the models are limited.  Using 
predictions or simulations from AGCMs allows for longer records.  One example is the super 
ensemble technique proposed by Krishnamurti et al. (1999), where the individual model weights 
depend upon the statistical fit between the model’s hindcasts with observations during a training 
period.  If a model has consistently poor predictions for a variable at a specific location during 
the training period, the weight could be zero or negative.  Another approach is the Bayesian 
combination approach developed by Rajagopalan et al. (2002) and refined by Robertson et al. 
(2004), in which the prior probabilities are equal to the climatological odds, and models are 
optimally weighted based on probabilistic likelihood based on past performance.  An outstanding 
question for MME research involves explaining why some MME statistics, such as the ensemble 
mean, consistently outperform the individual models.  Similarly, it would be valuable to improve 
our understanding of what the ensemble mean and ensemble spread represent and how 
differences among these statistics can be best evaluated following MME experiments.   

 
 

DATA ASSIMILATION 
 
For the purposes of climate system prediction, data assimilation (DA) is the process of creating 
initial conditions for dynamical models. Since ISI predictions are based on coupled ocean-land-
atmosphere models, it seems apparent that data assimilation eventually needs to be carried out in 
a coupled mode. At the present, however, data assimilation is being done separately for different 
model components, with exceptions such as the partial coupling carried out in the recent NCEP 
reanalysis (Saha et al., 2010).  In the following sections, the current approaches (non-coupled) 
for carrying out assimilation on atmospheric, ocean, and land observations are discussed.  

 
                                                 
12 Uncertainties in predictions can also arise from the initial conditions. The approach to quantifying the 
uncertainty due to initial condition uncertainty includes selective sampling procedures such as the bred-
vector perturbation (e.g., Toth and Kalnay, 1993) and the singular vector technique (e.g. Molteni et al., 
1996), or simply sampling initial states that are separated by several hours (Saha et al., 2006).  
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FIGURE 3.9 Comparison of RMSE of individual models to the multi-model mean for for Nino3 
SST (solid) and ensemble standard deviation (spread) around the ensemble mean (dashed). The 
curves on the left represent individual models; the red curve on the right represents the multi-
model mean The multi-model mean has a lower RMSE at nearly all forecast lead times, and a 
larger spread among its members, indicating that it outperforms any of the individual models.  
The black dash-dotted curve indicates the performance of a persistence forecast. SOURCE: 
Weisheimer et al. (2009). 
 
 

Atmospheric Data Assimilation 
 
Early efforts at data assimilation for short-term weather prediction used a priori 

assumptions about the statistical relationship between observed quantities and values at model 
gridpoints. The most sophisticated of these early methods was referred to as optimal 
interpolation (OI). Modern data assimilation for short-term numerical weather prediction 
objectively combines observations, model predictions started at earlier times, and a priori 
statistical information about the observations and the model to create initial conditions for 
updated model predictions.  

The central theme of the evolution of atmospheric DA has been to use more information 
from the prediction model as both the models and the DA algorithms themselves have improved 
(Kalnay, 2003). In the earliest systems, the only information used from the model was the 
relative locations of model gridpoints (Daley, 1993). Later, short-term model predictions were 
used as a “first-guess” field that was then adjusted to be consistent with available observations 
(Lorenc, 1986).  

A major advance was the development of variational data assimilation methods in which 
a cost function measuring the fidelity of the model’s estimation of the observed values is 
minimized using tools from variational calculus (LeDimet and Talagrand, 1986). Three-
dimensional variational (3D-Var) techniques were implemented first (Parrish and Derber, 1992), 
with the most recent state from a model prediction being modified to better fit the observations. 
Variational techniques require a priori specification of a background error covariance, an 
estimate of the statistical relationship between different model state variables (Courtier et al., 
1998). Although in principle OI and 3D-Var are nearly equivalent, (Lorenc, 1986), the ability of 
3D-Var to find a global solution using all observations simultaneously resulted in less noisy and 
more balanced initial conditions for the predictions. More recently, four-dimensional variational 
(4D-Var) techniques have become the state of the art for operational numerical weather 
prediction. These techniques adjust the initial state of the model at an earlier time so that the  
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FIGURE 3.10 Satellite observing systems available for data assimilation in the ERA-Interim 
starting in 1989. SOURCE:  ECMWF. 
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FIGURE 3.11 Number of satellite observations assimilated into the ECMWF ERA-Interim 
reanalysis (data assimilation system), with arrows indicating the introduction of new systems.  
SOURCE: ECMWF.  

 
 

model evolves to fit a time sequence of available observations (Rabier et al., 1999). Predictions 
are then made by extending this model trajectory into the future.  

Assimilation of remotely sensed atmospheric observations has played a large role in the 
increase in prediction quality over the last two decades (see “Atmospheric Observations” section, 
Figures 3.10, and 3.11). Figure 3.10 shows the types of remotely sensed satellite observations 
since 1989, and Figure 3.11 shows the number of satellite observations assimilated in the 
ECMWF Interim Reanalysis (ERA-Interim): about 1.5 million/day in 1989, jumping to 10 
million/day in 2002 with the introduction of AIRS high resolution infrared sounder, and with 
another large increase from the high resolution infrared interferometer IASI (METOP).  Figure 
3.12 compares two recent reanalyses performed at ECMWF, the ERA 40, carried out with 3D-
Var, and ERA-Interim, an experimental 4D-Var reanalysis. The obvious difference in 
performance between the two systems (which use the same observations but differ in their data 
assimilation systems) during the overlapping years quantifies the importance of the methods used 
for data assimilation, quality control, and advances in the model. It is remarkable that in the 
“reforecasts” from the ERA-Interim, it is possible to detect the improvement due to the 
introduction of AIRS in 2003, with a perceptible increase in anomaly correlation values in the 
five- and seven-day predictions. 

The most recently developed methods for atmospheric data assimilation are ensemble 
Kalman filter (EnKF) techniques that use a set of short-term model predictions to sample the 
probability distribution of the atmospheric state. The ensemble provides information about both 
the mean state of the model and the covariance between different model variables. The ensemble 
members are adjusted using observations to produce initial conditions for a set of predictions. 
EnKF techniques are now in operational use for ensemble weather prediction (Houtekamer and 
Mitchell, 2005). Understanding the relative capabilities and advantages of 4D-Var and ensemble 
methods is an area of active research (e.g., Kalnay et al., 2007; Buehner et al., 2009a and b). 
There is a developing consensus that a “hybrid” approach combining a variational system (3D-
Var or 4D-Var) with EnKF may be optimal. 
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In concert with using increasing amounts of information from the numerical model, 
increasingly sophisticated DA techniques facilitated the use of a more diverse set of 
observations. The earliest techniques were limited to assimilating observations of quantities that 
were one of the model state variables. Variational methods facilitated the assimilation of any 
observation that could be functionally related to the model state variables. However, a priori 
estimates of the relationship between errors in estimates of model state variables and the 
observed quantities were required. Ensemble methods automatically provide estimates of these 
relationships making it mechanistically trivial to assimilate arbitrary observation types. The types 
and numbers of observations assimilated for NWP has soared as DA techniques have improved 
in concert with the development of remote sensing systems that produce ever increasing numbers 
of observations. 

While it can be difficult to separate prediction and forecast improvements due to model 
enhancements, DA advances, and increased numbers of observations, there is no doubt that all 
three have played a major role in improvements in NWP during the last decade (Simmons and 
Hollingsworth, 2002). In the mid-1990s, operational NWP centers seemed to be faced with a 
saturation in prediction quality (see Figure 2.1 on ECMWF 500-hPa geopotential height anomaly 
correlation). Since then, however, the rate of quality improvement has accelerated again. This 
acceleration is generally attributed to the direct assimilation of globally distributed Advanced 
Microwave Sounding Unity (AMSU) radiances (English et al., 2000), but it is important to 
remember that these observations could only be used effectively with advanced DA techniques 
(e.g., 4D-Var) and improved models. Removing bias from the observations was also essential.  
Similar improvements in quality for intraseasonal to interannual prediction could be expected by 
implementing improved DA in ocean, land surface, and possibly cryosphere models. 

 
 

Ocean Data Assimilation 
 
As pointed out in Chapter 2, much of the information required for successful ISI predictions 
resides in the initial conditions for the ocean, land surface, and cryosphere components of the 
climate system. There is a much shorter history of prediction and data assimilation for these 
components. This is partially due to the difficulty of observing these systems.  In situ 
observations of the ocean, especially in remote areas or the deep ocean, have been difficult and 
expensive to obtain. It is also difficult to take in situ observations of quantities like land surface 
temperature and moisture (Reichle et al., 2004), or snow and ice thickness and extent (Barry 
1995).  In the last two decades, the number of observations of the ocean has soared, as noted 
earlier in the Observations section. Moored buoy systems have been developed in all of the 
world’s tropical oceans and provide high frequency measurements of temperature, salinity, and 
currents.  Global networks of autonomous drifting surface buoys and ocean sounders have been 
deployed, and remote sensing measurements of surface temperature, sea surface height, and 
ocean color are routinely available. Remote sensing observations of the land and cryosphere are 
also now available.  

Since the ocean is considered to be the source of the majority of seasonal predictability, 
and the ocean is the best observed non-atmospheric climate system component, it has been 
natural to focus ISI DA efforts here. Sea surface temperature estimates, made using primitive 
assimilation techniques, have been available since the 1970s (Miyakoda et al., 1979) and  
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FIGURE 3.12 ECMWF 500-hPa geopotential height anomaly correlations from two different 
reanalysis systems.  Gray: ERA-40 with 3D-Var (ca. 1998); Colors: ERA-Interim which uses 
4D-Var (ca. 2005). “D+3” corresponds to the 3-day forecast; “D+5” the 5-day forecast; and, 
“D+7” the 7-day forecast.  In each case the top line is the anomaly correlation of the forecasts 
started from the reanalysis for the Northern Hemisphere, and the bottom line is the 
corresponding forecast for the Southern Hemisphere. Note the improvement brought about by 
the improvement of the data assimilation system, which is especially important in the Southern 
Hemisphere. SOURCE: ECMWF. 
 
 
continue to be produced (Reynolds et al., 2002). These methods are used routinely to produce 
products like analyses of the sea surface temperature. The first use of more modern data 
assimilation was a 3D-Var/OI system that used the Geophysical Fluid Dynamics Laboratory 
(GFDL) ocean forecast model and surface fluxes from the GFDL First GARP Global Experiment 
(FGGE) reanalysis to predict a “first-guess” for the assimilation (Derber and Rosati, 1989). 
While capable of assimilating observations of any model state variable, the system was primarily 
used with observations of temperature, and to a lesser extent salinity. Ocean DA systems based 
on this algorithm continue to be used at operational prediction centers like NCEP, ECMWF and 
UKMO. Many of them incorporate a number of heuristic enhancements, for instance the use of 
independently produced sea surface temperature analyses instead of observations of near-surface 
ocean temperature.  Most current ocean DA efforts are using assimilation algorithms that would 
be regarded as outdated for atmospheric applications. 

Ocean data assimilation has several major challenges compared to atmospheric data 
assimilation: (1) the observing system is sparser, and started later than the global atmospheric 
observing system, (2) the models are arguably worse in representing the real ocean, and (3) the 
time scales for forecasting are longer, so both the analyses and the forecasts (and the 
verifications) are less frequent.  However, if advanced assimilation systems (4D-Var or EnKF) 
for the ocean are developed, tuned, and used operationally, similar improvements in the ocean 
analysis and predictions would be expected.  
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Here we briefly review two ocean DA systems that are currently in use: the NCEP Global 
Ocean Data Assimilation System (GODAS) and the ECMWF System 3 (S3), implemented in 
200613.   
 
 
NCEP GODAS 
 

Coupled ocean-atmospheric forecasts and ocean data assimilation (ODAS) were 
pioneered at NCEP under the direction of Ants Leetmaa (Ji et al., 1998), who created a data 
assimilation system for the Pacific for the purpose of predicting ENSO. This was significantly 
improved, and the last version (RA6) of ODAS has been widely used (Behringer et al., 1998). 
RA6 was replaced by a Global Ocean Data Assimilation System (GODAS), which was coupled 
with the successful Climate Forecast System (Saha et al., 2006). 

The numerical model in GODAS is the GFDL MOM-v3, with a horizontal resolution of 
1° x 1°, enhanced to 1/3° in latitude within 10° of the equator. It has 40 levels with 10 m 
resolution in the upper 200 m, an explicit free surface, a Gent-McWilliams (Gent and 
McWilliams, 1990) mixing and a KPP (K-Profile Parameterization, Large et al, 1994) vertical 
mixing. The model is forced at the surface by analyzed momentum flux, heat flux, and fresh 
water flux produced by the NCEP atmospheric Reanalysis 2 (R2). 

The GODAS data assimilation is based on the 3D-Var/OI of Derber and Rosati (1989). In 
addition the model top level is relaxed towards the Reynolds weekly SST analysis, and the 
surface salinity is relaxed towards the annual salinity climatology (from Levitus, 1982). GODAS 
assimilates temperature profiles from XBTs, moored buoys including TAO, TRITON and 
PIRATA, and from Argo profiling floats (see “Ocean Observations” section in this chapter). In 
addition, for each temperature profile, a synthetic salinity profile is created from a local 
climatology of the temperature-salinity relationship. These salinity profiles are also assimilated. 
Although observed salinity is not currently assimilated, experiments using Argo salinities 
(Huang et al, 2008) showed a clear improvement with a reduction of errors not only in salinity 
but also in currents.  

One of the challenges for 3D-Var is defining appropriate multivariate background 
covariances that allow observations of one quantity to impact state variables of another type, for 
instance, having assimilation of salinity observations directly impact temperature state variables. 
The current GODAS is univariate in this sense. Multivariate GODAS was developed and tested 
but performs worse than univariate in assimilating salinity, possibly due to the use of synthetic 
salinity profiles. 

Remote sensing measurements of sea surface height, which is a model state variable, 
from the TOPEX/Jason-1 altimetry have been available since 1992.  Behringer (2007) indicates 
that assimilating surface heights (SSH) directly is not effective in this system, and instead it is 
used as a constraint on the baroclinic (temperature and salinity) analysis. When assimilated, it 
improves the anomalous SSH with respect to the observations but other aspects of resulting 
forecasts may be degraded.  
 
 
                                                 
13 The committee is aware that other more sophisticated ocean DA systems exist (e.g., MERCATOR, 
HYCOM, NCOM, OPAVAR, MIT ECCO).  However, this section focuses on systems currently used in 
operational settings and the prospects for their improvement.   
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ECMWF S3  
 

The ECMWF S3 and NCEP GODAS systems are quite similar. The S3 (Balmaseda et al., 
2008) is based on the HOPE-OI scheme.  The ocean model (HOPE, Wolff et al., 1997) has the 
same resolution as MOM-v3 (1° x 1° horizontally) but only 29 vertical levels. It uses Optimal 
Interpolation (OI), which is nearly equivalent to the 3D-Var of GODAS. The operational system 
assimilates subsurface temperature and salinity, along with altimeter sea surface height 
anomalies. All observations in the upper 2000 m are assimilated. The sea surface temperatures 
are strongly relaxed to the Reynolds SST analysis. Surface forcing is similar to that in GODAS 
with fluxes from the ERA40 reanalysis (1959–June 2002) and the operational prediction system 
thereafter. Since the precipitation-evaporation flux is inaccurate in ERA40, a correction for 
precipitation (Troccoli and Kallberg, 2004) is used. An online additive bias correction has 
recently been added to the system (Balmaseda et al., 2008) that allows a reduction of the relative 
weight given to observations and reduces the strength of the relaxation to climatology. The main 
differences between the S3 and GODAS systems are that the S3 assimilates Argo salinities and 
altimeter data, and it includes a relatively sophisticated bias correction.  
 
 
Improvements to Operational Ocean Data Assimilation Systems 

 
There has been research with both 4D-Var (Weaver et al., 2003: Stammer et al., 2002) 

and EnKF (Keppenne and Rienecker, 2002) assimilation for the ocean. To date, the operational 
ISI community has been hesitant to adopt these more advanced assimilation methodologies 
because tests indicate that they may result in comparable and even worse forecasts, and in data 
sparse conditions they may not offer improvement. Since more advanced methods rely 
increasingly on the fidelity of the dynamical model, this may indicate that ocean models are not 
yet sufficiently accurate for these methods. Analogy to the atmosphere suggests that a program 
of model improvement combined with the incorporation of more sophisticated assimilation 
techniques that can make better use of all available observations is likely to lead to improvement 
for the ocean component of operational ISI predictions. 
 

 
Land Data Assimilation 

 
Land data assimilation systems (LDAS), as described in the “Land Observations” section, 

use surface meteorological forcing inputs that are based on observations as much as possible.  
Here we describe progress on another aspect of land assimilation, i.e., the merging of land 
surface state observations with estimates from the corresponding land model prognostic variables 
using mathematically optimal techniques. 

A popular approach involves adjusting the land model’s soil moisture reservoirs in 
response to screen-level (2 m) observations of atmospheric temperature and humidity using 
Optimal Interpolation (OI).  If simulated relative humidity is too low compared to observations, 
soil moisture is increased so that evaporation increases, thereby increasing the simulated 
humidity.  While this approach for initialization has been used with success in many operational 
centers (with success measured as improved weather forecasts), errors in simulated relative 
humidity and temperature need not stem from errors in soil moisture; they could stem from 
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errors in parameterization, so that the modified soil moisture contents may not be more accurate 
than the original estimates. Drusch and Viterbo (2007) note that soil moisture profiles obtained 
through the OI approach are not necessarily sufficient for hydrological or agricultural 
applications; presumably, they may not be optimized for seasonal forecast initialization, either. 

More recent land assimilation efforts have focused on the Kalman filter. ECMWF and 
Meteo-France, for example, are poised to implement in their operational NWP systems an 
extended Kalman filter (EKF) for assimilating soil moisture information derived from active and 
passive sensors (and potentially other variables as well).  Currently, operational soil moisture 
retrievals are generated from Advanced Scatterometer (ASCAT) observations by the 
EUMETSAT satellite.  The recently launched SMOS and the planned SMAP missions will 
provide L-band soil moisture information down to 5 cm in many areas.  NASA/GSFC has 
pioneered the development of the ensemble Kalman filter (EnKF) for assimilating soil moisture 
retrievals or associated radiances into a land model; analyses with SMMR and AMSR-E soil 
moisture data show that EnKF assimilation produces soil moisture products with increased 
accuracy over model products or satellite retrievals alone (Reichle et al. 2007). Further plans for 
land data assimilation in various institutions include the use of a Kalman filter (EKF or EnKF) 
for snow data assimilation, the development of multivariate land data assimilation methods, and 
the assimilation of land variables as part of a coupled land data assimilation system. 

 
 

USE OF FORECASTS 
 
 ISI forecasts can be valuable tools for decision makers.  However, the use of a forecast is 
predicated on its quality.  A forecast that is not sufficiently accurate or reliable is unlikely to be 
used to make decisions.  The quality of a forecast can be determined through a variety of metrics 
(see “Forecast Verification” section in Chapter 2 for more details on forecast verification 
metrics).  Typically, multiple metrics are used to provide an overall sense of forecast quality. 
 Understanding or improving forecast quality requires information about the predictions 
that go into a forecast.  Increasingly, forecasts are generated from multiple prediction inputs, 
which can be objective (e.g., predictions from statistical or dynamical models) or subjective 
(e.g., expert opinion of forecasters).  Detecting how these inputs or changes to these inputs affect 
forecasts is critical for improving forecast quality. 
 Finally, forecasts can be used by decision makers if they are provided in the appropriate 
format.  A forecast regarding SST in the tropical Pacific may not be easily translatable to the 
local climate conditions of a particular user.  In addition, different variables will have varying 
levels of value for different users.  Some decision makers may require information about the 
seasonal mean values for particular meteorological variables, such as precipitation or 
temperature, while others may be more interested in certain extreme events, such as heat waves 
or incidents of heavy precipitation.  Scale can also be important—some decision makers may 
require national or regional information, while others might be more focused on a city or even a 
piece of infrastructure.  All of these factors can contribute to the utility of an ISI forecast with 
respect to societally-relevant decisions. 
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FIGURE 3.13  Seasonal precipitation forecasts are skillful over a larger portion of land during 
ENSO events (solid black line) than ENSO-neutral conditions (dashed black line).  The purple 
line indicates the percentage increase in area between ENSO events and ENSO-neutral 
conditions.  Top panel corresponds to the entire globe; bottom panel the area within 30° latitude 
of the equator.  SOURCE: Goddard and Dilley (2005).  
 

 
Measuring Forecast Skill and Assessing Forecast Quality 

 
Evolution over time in skill according to various metrics can occur for multiple reasons, 

the main two factors being changes in the sources of predictability within the climate system and 
changes in the forecast system. Given a constant forecast system, changes in, for example, 
correlation between the predictions and observations of the climate over time come primarily 
from changes in the sources of predictability. It is a matter of signal versus noise; the signal due 
to forcing from SSTs or soil moisture changes noticeably from year to year, whereas the noise 
due to the internal dynamics of the atmosphere remains largely constant (Kumar et al., 2000). 
Overall, the seasonal climate predictions are more confident, and many skill metrics are higher, 
during ENSO events (Figure  3.13: Goddard and Dilley, 2005), as demonstrated by comparing 
forecast verifications during El Niño and La Niña conditions against those during ENSO-neutral 
conditions. The influence of ENSO, and other drivers of teleconnection patterns, on 
predictability remains incompletely understood.   

For the United States, as with many other regions, much of currently realized quality in 
official forecasts is due to ENSO (Livezey and Timofeyeva, 2008), and the rest is attributed to 
climate trends, at least for temperature. For the official precipitation forecasts most of the skill  
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FIGURE 3.14  Nino3.4 correlation coefficient (predictions versus observations) for retrospective 
forecasts plotted as a function of lead time. The red and yellow bars correspond to dynamical 
models: the Climate Forecast System (CFS) is a state-of-the-art model developed in the mid-
2000s (Saha et al., 2006), while the Coupled Model Project (CMP) prediction is older and was 
developed in the mid 1990s (Ji et al., 1995). CCA, CA, and MRK correspond to statistical 
models (Canonical Correlation Analysis, Constructed Analogues, Markov; several of these 
methods are discussed in “Statistical Models” section in this chapter and Appendix A). The 
figure highlights two points: (1) comparing the red and yellow bars indicates how coupled 
dynamical models have improved for this particular metric over the last two decades and (2) the 
statistical methods and the dynamical model methods are quite competitive with each other. 
SOURCE:  Adapted from Saha et al. (2006) 
 
 
assessed by the modified Heidke skill score derives from ENSO. Outside of ENSO, the skill 
assessment (Livezey and Timofeyeva, 2008) suggests that where trends are observed but skill is 
low, the information from trends has been underutilized by CPC. In the cases where skill is 
significant but the trends are negligible, it is suggested that the source of skill is the decadal scale 
variability captured through their statistical tool of Optimal Climate Normals. For temperature, 
the analysis does show that a few areas of positive Heidke skill in the official forecasts are found 
additionally during non-ENSO conditions in regions where temperature trends are weak 
(Livezey and Timofeyeva, 2008). Whether this indicates potential sources of predictability 
beyond ENSO and trend or is a lucky draw from a limited set of subjectively derived predictions 
is unclear. 

In the case of a changing forecast system, one can demonstrate improvements in 
prediction quality by comparing the different forecast systems, such as the predictions of the 
newer system to those of older system over a common period.  For example, when the 
correlation skill of Nino3.4 in the NCEP Climate Forecast System (CFS) dynamical model 
reached parity with that of statistical approaches (Figure 3.14), this was seen to be a significant  
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FIGURE 3.15  Improvement in forecasts from the latest ECMWF forecast system (red line) 
compared to earlier versions (blue and green lines).  The black line corresponds to a Persistence 
forecast.  Metric shown is RMS error for Nino 3.4 SST for 64 forecasts in the period 1987–2002. 
SOURCE: ECMWF, Anderson et al (2007).  
 
 
accomplishment. Incremental improvements in the ECMWF dynamical model are illustrated 
through successive reduction in the RMSE of Nino3.4 predictions (Figure 3.15). Comparative 
assessments of new versus old forecast systems can really only be quantified for fully objective 
forecast systems, although one could demonstrate improvements of a newer objective system 
over a previous non-objective system (i.e., one involving subjective intervention).  It should also 
be noted that these assessments of improvement potentially suffer from sampling issues, since 
there are typically not more than 20 years of retrospective forecasts for comparison.  However, 
there are coordinated international efforts (e.g., the Climate Historical Forecast Project; CHFP) 
to extend the retrospective forecast period further back in time. 

Currently, forecast quality is often difficult to compare across systems because of 
differences in forecast format, verification data, the choice of skill metrics, or even differences in 
graphical appearance. A mechanism to provide a consistent view of prediction quality across 
models was established in 2006 by the World Meteorological Organization. The charge was 
taken up by the lead center for the Standard Verification System of Long Range Forecasts (LC-
LRFMME: http://www.bom.gov.au/wmo/lrfvs/) co-hosted by the National Meteorological 
Services of Australia and Canada. The LC-SVSLRF responsibilities include maintaining an 
associated website displaying verification information in a consistent and similar way. It allows 
forecasting centers to document prediction quality measured according to a common standard. 
The SVS is defined in Attachment II.8 (p. 122) of the WMO Manual on the Global Data-
Processing and Forecasting System (WMO No. 485). Unfortunately, the goal of the comparative 
assessment envisioned by the WMO has not been achieved because it depends on the 
cooperation of the global producing centers (http://www.wmolc.org) to contribute consistent 
verification data, preferably in a common graphical format, which has not yet happened.  

Comparative estimates of quality can be similarly difficult to quantify, even for the U.S. 
forecasts. One of the few studies to date compares the official subjective forecasts since 1995 
with a newly implemented objective methodology that combines three statistical and one 
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dynamical tool (Figure 3.16; O’Lenic et al., 2008). As stated above, the objective combination 
outperforms the subjective forecasts. The skill metric used in that study is the Heidke score, 
which was discussed in the previous section; it is not advocated by the WMO-SVSLRF. 
Assessment of forecast quality from the NCEP CFS model does not use Heidke skill scores, but 
rather correlation, Brier skill scores (BSS), and reliability diagrams (Saha et al., 2006). In Saha et 
al. (2006), a widely used statistical tool is compared to the dynamical model, with the result that 
the two methods have comparable but complementary BSS; regions of highest skill rarely 
overlap. Their result strongly suggests that additional predictability that is seen by the statistical 
tool but not currently captured in the dynamical model could result from improvements to that 
model. It also suggests the benefit of using both statistical and dynamical modeling approaches 
for seasonal climate prediction.  

 
 

Combined Forecast Systems 
 

A growing body of literature touts the benefit of multiple prediction inputs in climate 
forecasts.  Many national centers that produce real-time forecasts include one or more dynamical 
models, one or more statistical models, and perhaps also the subjective interpretation or 
experience of the forecasters involved. As this practice continues, and as more prediction inputs 
become openly available, it is possible to assess the relative benefits of each type of prediction 
input to the quality of the forecast.  In addition, as more prediction data becomes openly 
available, new methods for making the best use of that information can be tested and 
documented. 

 
 

Subjective Combination 
 

Since the early 1970s, weather forecasts in the United States and elsewhere were 
subjectively derived using the objective input as guidance (Glahn, 1984). In the mid-1980s, 
comparison of the skill of these objective and subjective forecasts according to several metrics 
indicated that the subjective weather forecasts were generally more skillful than the objective 
ones for shorter lead times (e.g. 12–24 hours), whereas the two types of forecasts exhibited 
approximately equal quality for longer lead times (e.g. 36–48 hours; Murphy and Brown, 1984). 
The same study further showed that both types of forecasts had positive trends in correlation skill 
over the decade, with improvements in objective forecasts equaling or exceeding improvements 
in subjective forecasts. 
  The use of subjective guidance has continued to this day for weather and now climate 
forecasts. Many seasonal-to-interannual forecasting centers, particularly those that use multiple 
prediction inputs, maintain a subjective element in their forecasts. At CPC and UKMO, for 
example, inputs from both statistical and dynamical prediction tools are considered and 
discussed, prior to “creating” a forecast (Graham et al., 2006; O’Lenic et al., 2008). In some 
instances, a subset of the tools will be objectively combined prior to their consideration next to 
other tools. Starting around 2006, CPC began objectively combining its main prediction tools, 
which consist of the Climate Forecast System (CFS) dynamical model and three statistical 
prediction tools, using an adaptive regression technique. This consolidation serves as a “first 
guess” but then is discussed with a number of other inputs, which include other consolidations as  
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FIGURE 3.16  Objective forecasts tend to perform better than forecasts with a subjective 
element.  Lines represent the percentage improvement of forecasts relative to climatology for a 
3-month forecast issued with a 1/2 –month lead time.  The mean skill of objective forecasts for 
the entire period (solid horizontal line, “CON” for “objective consolidation”) is above the mean 
skill of the forecasts with a subjective element for the entire period (dashed horizontal line, 
“OFF” for “official forecasts”).  The individual forecasts (non-horizontal lines) throughout the 
period often indicate a similar relationship. Top panel: temperature; bottom panel: precipitation. 
SOURCE: Adapted from O’Lenic et al. (2008).  
 
 
well as individual tools and may or may not incorporate historical forecast quality. Comparison 
of the official forecasts, which include the subjective intervention, against the purely objective 
consolidation indicates that the subjective element reduces forecast quality (O’Lenic et al., 
2008), particularly during winter in the absence of a strong ENSO signal (Livezey and 
Timofeyeva, 2008). 
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A notable subjective element also exists in regional climate outlook forums (RCOFs14). 
These forums, initiated in the late 1990s by the WMO, National Meteorological and 
Hydrological Services (NMHSs) and other international organizations, bring together countries 
within a region, such as Southeastern South America or the Greater Horn of Africa, to develop a 
consensus outlook for the climate of the upcoming season. Seasonal climate predictions from the 
participating NMHSs are discussed in conjunction with those from international centers. The 
inputs are not combined objectively or systematically, although they do often consider past 
forecast quality in the discussions. Some analyses suggest that the subjective element of the 
process causes the forecasts to be quantitatively less skillful than if the input predictions were 
combined more objectively (Berri et al., 2005).  

Efforts are underway to produce more consolidated inputs and other objective input tools 
that can be used in the RCOFs to encourage the reduction of the subjective element. One of these 
efforts includes the establishment of a Lead Centre of Long-Range Forecast Multi-Model 
Ensembles (LC-LRFMME15), which objectively combines the predictions contributed by the 
current nine Global Producing Centres (GPCs). However, associated skill information, which 
would presumably be provided by the WMO Lead Centre for the Long Range Forecast 
Verification System (LRFVS16), does not accompany these forecasts primarily because this 
model performance information is not provided by the GPCs. The GPCs also do not readily 
provide access to the historical model data that would allow users to evaluate the performance 
for themselves. In terms of other objective input tools, one that has been increasingly used in the 
RCOFs is the Climate Predictability Tool17, which allows forecasters to develop statistical 
predictions that use as input either observed precursors or dynamical model output. 

 
 

Objective Combination of Predictions 
 

As discussed in the previous sections, the few studies that have compared objective 
forecasts and the subjective forecasts to which they contribute indicate that the subjective 
element degrades the quality of the objective “first guess” (Berri et al., 2005; O’Lenic et al., 
2008).  But beyond that, objective methods allow a forecaster to demonstrate how the forecast 
would have performed in the past given new prediction inputs, which is not possible if the inputs 
are subjectively combined.  

Statistical and dynamical predictions each have their own merits and should not 
necessarily be viewed as competitors. It is nonetheless desirable to compare the performance of 
statistical and dynamical tools when both exist for a given prediction target. This comparison can 
serve two purposes if there is a clear difference in performance: first, it may indicate that an 
important process is missing from one of the prediction approaches, and second, it may indicate 
that one of the predictions be given greater weight in the final forecast. Several studies have 
shown that statistical and dynamical methods have comparable quantitative skill for specific 
forecast targets such as ENSO (e.g. Saha et al., 2006) or precipitation in some parts of the world 
(e.g. Moura and Hastenrath, 2004). In other parts of the world, such as the United States, 
statistical and dynamical information bring complementary information (e.g. Saha et al., 2006). 
                                                 
14 http://www.wmo.int/pages/themes/climate/consensus_driven_predictions.php 
15 http://www.wmolc.org/ 
16 http://www.bom.gov.au/wmo/lrfvs/ 
17 http://iri.columbia.edu/climate/tools/cpt 
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The same can be said for different statistical predictions, such as those capturing ENSO 
teleconnections compared to those isolating recent trends (e.g. Livezey and Timofeyeva, 2008). 
In addition, considerable value can be gained by employing the two approaches together, such as 
model output statistics (MOS, see “Correlation and Regression” section in this chapter), which 
refers broadly to the statistical correction of dynamical models. MOS techniques can be used to 
correct systematic biases of dynamical models by translating the aspects of the observed 
variability that the model captures correctly into something that more closely resembles the 
observations (e.g. Feddersen et al., 1999; Landman and Goddard, 2002; Tippett et al., 2005). 

By far, the greatest boost to objective combination of prediction inputs has come through 
advances in multi-model ensembles (MME). These advances within the climate community have 
been particularly rapid since the advent of publically available archives of model data, such as 
the DEMETER dataset for seasonal-to-interannual predictions (Palmer et al., 2004), with many 
decades of hindcasts, and the Coupled Model Intercomparison Project v3 (CMIP3) that provided 
the data of the climate change simulations of the 20th century and projections of the 21st century 
summarized in the 4th Assessment Report of the IPCC (IPCC, 2007). Although in each case the 
databases contain coupled ocean-atmosphere models with similar external forcing and/or initial 
conditions, the dynamical cores of the models and their physical parameterizations differ. The 
premise holds that although models have deficiencies, they do not all have the same deficiencies. 
Thus, combining models brings out the robust information they have in common and reduces the 
individual or random biases that they do not share, which can provide more reliable forecast 
information. By allowing scientists from all over the world to access a common set of models 
from different modeling centers, results are easier to compare and possible to replicate.  

One result derived from these archives is that there is no single best model; one model 
may be best in some aspect, but turning to another aspect will highlight a different model 
(Gleckler et al., 2008; Reichler and Kim, 2008). Furthermore, it has been generally found that the 
multi-model mean outperforms the individual models (Hagedorn et al., 2005; Gleckler et al., 
2008). Assigning weights to the individual models according to their historical performance 
(Rajagopalan et al,. 2002) can further improve upon the skill of MME relative to the simple 
model mean, provided that a sufficient number of hindcasts exist to distinguish the relative 
performance between models, i.e., about 40–50 years. Due to the need to fully cross-validate the 
weights assigned to models in the combination, it becomes difficult to improve upon the simple 
multi-model mean for MME with shorter hindcast histories (DelSole, 2007). The degree to 
which performance can be improved, both in terms of mean error reduction and probabilistic 
reliability, depends on the number of models involved, with more models yielding a higher 
quality MME (Robertson et al., 2004). However, it is not clear at what number the incremental 
benefit from adding more models begins to plateau. The magnitude of the benefit varies with the 
forecast target, including variable, region, and season, and with the quality of the individual 
models that contribute.  

The wide community involvement in MME has shown that:  
 

• All models do have their deficiencies; the one weak point in the premise of MME is that 
models often do contain some common biases (Gleckler et al., 2008). It therefore makes 
good sense to calibrate models in terms of both their mean and variability to the greatest 
extent possible, prior to combination (e.g. Hagedorn et al., 2005).  

• Hindcast records are necessary to assess model performance prior to its inclusion in an 
MME. The hindcast may not be long enough for the purposes of weighting models, but it 
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needs to be long enough to vet the realism of the model’s mean state and variability 
relative to other models in the MME suite because poor models will degrade forecast 
quality.  

• Forecasts that objectively combine a number of prediction inputs allow information with 
different strengths and weakness to be distilled and yield more robust and reliable results. 
The prediction inputs can include statistical models, dynamical models, and the 
combination of the two. The main weakness of MME is a lack of design behind the 
specific models included; MME usually draws on whatever respectable models are 
available, and thus does not necessarily span all uncertainties in model physics.  

 
 

Consideration of End User 
 

Other approaches exist for going beyond the quality of a given forecast or model 
prediction to determine its value to a potential user.  The provision of quantitative, probabilistic 
outlooks of societally-relevant variables can increase the use of climate forecasts even if the 
underlying quality were unchanged. Although seasonal climate forecasts are now commonly 
issued as probabilities for pre-defined categories (Barnston et al., 1999; Mason et al., 1999), 
those categories may not align with the risks and benefits of many decision makers. Additionally, 
users of the climate forecasts, from sectoral experts to the media, are often interested in relatively 
high resolution information that can be relevant to local concerns, even if it means reduced 
accuracy of the information. This information mismatch is one of the most commonly cited 
reasons for not using seasonal forecasts (e.g. CCSP, 2008). Good quality intraseasonal-to-
interannual forecasts are only a starting point. In order for forecast information to be 
incorporated into climate risk management and decision making, it has to be in an appropriate 
format, at an appropriate space and time scale, and of the right variables to mesh with the 
decision models it is to inform. 

One way to address the information mismatch between the coarse spatial resolution of 
global seasonal climate forecasts and the high-resolution needs of the end user is to use 
downscaling techniques. In statistical downscaling, the global climate forecast provides the input 
parameters for an empirical model with high spatial resolution. In dynamical downscaling, the 
global forecast is used to provide lateral boundary conditions to a high-resolution nested regional 
atmospheric model. Although downscaling has been used extensively in climate change research, 
its use on ISI timescales has been more on an exploratory basis. With increases in computing 
power, global climate models are starting to close the gap with the fine spatial resolution needs 
of the end user. However, there is still a window of a decade or so during which downscaling 
techniques will continue to add significant value to the dissemination of ISI forecasts. 

Recent research has opened other possibilities of providing richer seasonal climate 
information. For example, the provision of the seasonal forecast as the full probability 
distribution as opposed to fixed, relative categories permits the determination of probabilistic 
risk of some decision-specific threshold (e.g. Barnston et al., 2000). Or, one may desire the 
characterization of the weather within the climate, such as the likely number of dry spells of a 
given duration.  In some cases, certain weather characteristics of the seasonal climate may even 
be more predictable than the seasonal totals (e.g. Sun et al., 2005; Robertson et al., 2009).  
Similarly, Higgins et al. (2002, 2007) have documented how the character of daily weather 
changes over the United States during ENSO events.  This information could complement 
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forecasts of the seasonal mean in ENSO years, particularly for the winter season, and provide 
true forecasts of opportunity (Livezey and Timofeyeva, 2008) if it were packaged and 
communicated in that manner. 

Users can improve the application of forecast information if they are made aware of 
instances of conditional forecast skill (Frias et al., 2010) or forecasts with no skill.  As shown in 
Figure 3.13, forecasts are often more skillful during ENSO events, which could guide decision 
makers to selectively use forecast information as part of their planning.  Likewise, there may be 
certain regions or situations for which forecasts, or specific improvements to the building blocks 
of forecasts, offer little or no skill.  For example, information on soil moisture can contribute to 
predictions of air temperature (see the soil moisture case study in Chapter 4; Figure 4.11), but the 
improvements are limited to certain key regions and seasons.  In regions and seasons for which 
there is no forecast skill, or in situations where there is no forecast signal, operational centers can 
still provide a useful service through the issuance of information on the historical range of 
possible climate outcomes (i.e., climatology).   

The difficulty for forecast centers in producing tailored forecasts is that what is needed is 
often specific to a particular problem, which in turn depends on the sector and location. This can 
be difficult for national or even regional forecast centers to provide on an operational basis. If the 
forecast data and the associated history are openly available, the tailoring of the information to 
the specific uses may be possible. The actual tailoring may be conducted by local forecast 
centers, intermediaries, or directly by the end-users. The national and international forecast 
centers could provide sufficient information through data archives, such that forecasts can be 
tailored to more specific decisions. This is not a trivial activity, however. Financial and 
computing resources would be required to maintain such a service.  

Given the investments that have already contributed to the development of intraseasonal 
to interannual prediction information, such an infrastructure would be a very economical 
extension that could dramatically increase the use of climate forecasts. For example, users would 
be able to evaluate past performance in terms of their own relevant metrics, or even in terms of 
their own local or regional observational data. Forecast centers regularly assess the quality of 
their prediction models or forecast systems (O’Lenic et al., 2008; Barnston et al., 2009), which is 
necessary for their own feedback and interaction with the climate community. However, the 
value of access to data for verification, tailoring, or even just formatting should not be 
underestimated. 
 
 

EXAMPLE OF AN ISI FORECAST SYSTEM 
 

The building blocks of ISI forecasts systems have been described in detail above. Here we 
provide a specific example of how these basic building blocks ultimately culminate in an ISI 
prediction. This example is based on current operational forecasts at NCEP. The intent here is to 
highlight the complexity of the problem, the multitude of inputs to the process, and where and 
when subjective input is used. A flow chart for the forecast production procedure is given in 
Figure 3.17.  

The forecast production process is described in detail in O’Lenic et al. (2008) and is 
summarized as follows. Climate Prediction Center operational seasonal forecasts are issued on 
the 3rd Thursday of each month at 8:30 AM, and a team of 7 forecasters at CPC rotates 
throughout the course of the year in preparing these forecasts. The process begins with a  
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FIGURE 3.17  Graphical representation of the NCEP forecast system, showing the relationship 
among observations, climate system models, and data assimilation schemes as well as the steps 
where subjective judgment and verification are used.  SOURCE:  John Gottschalck, NCEP, 
personal communication. 
 
 
comprehensive analysis of the state of the global oceans and atmosphere. This is largely based on 
best estimates of the current state of the climate system. Forecast tools, both CFS and statistical, 
are then consolidated into an objective first-guess forecast for U.S. temperature and precipitation. 
A telephone conference call is conducted the preceding Friday to discuss the current status of the 
climate system and the content of the available tools with partners in the broad climate 
community. Based on these discussions and the forecaster’s own interpretation of the forecast 
tools, the forecaster manually draws draft forecast maps for all thirteen forecast leads for both 
temperature and precipitation. A second conference call is then used to review the draft forecast 
maps with governmental climate partners only.  Forecast maps are finalized and processed to 
produce images, raw data files, and files for the National Digital Forecast Database (NDFD) for 
a large range of users. Finally, the lead forecaster writes a “Prognostic Map Discussion” that 
includes a review of the climate system, rationale for the forecasts, and an overview of the 
forecast maps.  
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POTENTIAL IMPROVEMENTS TO ISI FORECAST SYSTEMS 

 
In examining the components of existing ISI forecast systems and current practices, a 

number of opportunities for improvement have been identified.  These opportunities are 
summarized here in a structure that parallels the previous discussion by component of the ISI 
forecast system.  In Chapter 4, there is more detail about three specific ISI forecast topics:  
ENSO, MJO, and soil moisture.  The illustrative nature of the three case studies, together with 
the opportunities identified here, provide the foundation for the recommendations presented in 
Chapter 6. 

 
Observations  
 

• Many observations that could potentially contribute to ISI predictions are not being 
assimilated into ISI forecast systems (see DA bullet below).   
 

• The increase in the number of observations assimilated by ISI forecast systems has 
led to improvements in prediction.  However, the attribution of these improvements 
to specific observations can be difficult to confirm.  Also, study is required to 
determine the potential benefit for adopting new research observations as ongoing, 
operational climate observations to support ISI prediction.  
 

• Targeted observations for specific climate processes that are poorly understood 
could improve dynamical models by providing more realistic initial conditions, 
improved parameterizations of sub-grid scale processes, and/or data to be used in 
validation.   
 

• Sustained observations of the fluxes of heat and moisture between the atmosphere 
and ocean or between the land and atmosphere are useful for identifying biases and 
errors in dynamical models.  Many processes that act to couple earth system 
components are poorly understood and undersampled, and observations of the coupling 
are needed. 

 
Statistical and Numerical Models 
 

• Nonlinear statistical methods can augment linear statistics.  While linear methods 
have been used in forecasting with moderate success in the past, positive skill is 
geographically dependent and primarily related to the presence of strong forcing, such as 
El Niño.  Nonlinear techniques (e.g., nonlinear regression, neural networks, kernel 
methods) have been shown to be valuable in providing additional skill, especially at ISI 
timescales. 
 

• Present statistical models are not in competition with dynamical models and can be 
combined usefully with dynamical models.  They offer quality in certain areas where 
dynamical models fail and may point to areas where dynamical models can be improved.   
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• Proper cross-validation is an essential tool to estimate the true forecast skill.  The 
use of repeated cross-validation on the same data, however, can inflate the estimated skill 
when models are tuned after each iteration.  Such a process can result in overfitting.  Data 
need to be divided into training and testing sets where the testing data are set aside for an 
unbiased estimation of true skill.  It is acceptable to use subsets of the training data for 
model selection.  However, the testing data have to be kept out of the tuning process and 
used for the final assessment of skill. 
 

• Most statistical tests assume stationarity, but the climate system is not stationary on 
ISI timescales.  Statistical tests exist that can address such non-stationarity (e.g., variance 
stabilization techniques, Huang et al., 2004).  Non-stationarity can also be exploited to 
improve predictions.   

 
• Dynamical models exhibit systematic errors in their representation of the mean 

climate, the annual cycle, and climate variability.  While many of these shortcomings 
highlight opportunities for model improvement, they also contribute to forecast error.  
The physical processes associated with several sources of predictability (such as ENSO 
or the MJO) are not adequately simulated in numerical models.  

 
• Use of multi-model ensembles in an operational setting is still in its early stages.  

MMEs need to be developed further and research on proper methods of selection, bias 
correction, and weighting will likely help improve the forecasts. 
 

Data Assimilation 
 

• The most advanced data assimilation algorithms are predominantly focused on 
atmospheric observations, while the DA schemes tend to be less advanced for the 
ocean than for the atmosphere.  Ideally, data assimilation would be performed for the 
coupled Earth system. Specifically, more work is required to identify biases in the 
observational data and improve the ocean models so that advanced DA techniques can be 
applied to ocean observations.   
 

• Observations of many components of the Earth system are not part of DA 
algorithms.  Estimates of prognostic states at the land surface (e.g. soil moisture) and 
cryosphere (e.g., snow, sea ice extent) are generally not assimilated with operational DA 
schemes.  Some ocean observations are assimilated as part of operational forecasts but 
some are not (e.g., SSH).  

 
Forecast Verification and Provision  
 

• Forecast quality assessment needs to be made and communicated through multiple 
metrics.  Forecast quality has often been expressed through a single method (e.g., Heidke 
skill).  Multiple metrics and graphical techniques, including ones that assess the quality 
of the probabilistic information, will provide a better assessment of the fidelity of the 
forecast system. 
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• Access to archived hindcasts and real-time forecasts is required to tailor climate 
information to the needs of decision makers.  Information regarding forecast quality 
and skill varies widely among forecast systems.  Comparison among systems is critical 
for identifying opportunities for model improvement, as well as novel combinations of 
forecast models that may improve quality.  
 

• Subjective intervention into forecasts needs to be minimized and documented.  The 
subjective component can limit reproducibility, restricting retrospective comparison of 
forecast systems.  Although there are time constraints around issuing forecasts, it is 
helpful to have written documentation of the subjectivity of forecast preprocessing and 
post-processing to assess the relative performance of the inputs and outputs. 
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4 
Case Studies 

 
 

The discussions in Chapter 3 above are general in nature, comprehensively addressing the 
building blocks of a full ISI forecast system.  To provide a more concrete flavor for many of the 
issues involved in ISI prediction, the present chapter focuses on three cross-cutting examples—
El Niño-Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and soil moisture.  
Knowledge of the state of each of these phenomena or quantities is known to contribute to ISI 
forecast quality.  For each process, we address the scientific basis for expecting the process to 
contribute to the quality of ISI predictions, the manner in which forecast systems try to realize 
this potential (using the elements outlined in Chapter 3), their ability (or lack thereof) to do so, 
and the gaps in understanding and treatment of the process that have yet to be overcome. 
 
 

EL NIÑO-SOUTHERN OSCILLATION (ENSO) 
 

On interannual timescales, the variability in the tropical Pacific is dominated by the 
ENSO phenomenon (Rasmusson and Carpenter 1982; among others). During the transition to the 
warm phase of this oscillation, there is a dynamic adjustment of heat and mass between the 
western and eastern tropical Pacific, producing a positive sea surface temperature anomaly 
(SSTA) in the eastern Pacific. Associated with this dynamic adjustment, precipitation is 
displaced eastward from the climatological warm pool region toward the date line, and the 
normally easterly trade winds weaken or even become temporarily westerly. During the cold 
phase, the eastern tropical Pacific SSTA is negative, the trade winds are anomalously strong, and 
the precipitation is tightly confined to the warm pool region of the western Pacific. Typically, the 
time between warm events is around 2 to 7 years; however, there is also considerable modulation 
of the ENSO cycle on decadal timescales. Despite the quasi-periodicity, the predictability of 
ENSO is largely determined by the life cycle of individual events, which depends on the memory 
or inertia associated with upper ocean heat content and coupled ocean-atmosphere interactions. 
As the event evolves there are large spatial shifts in tropical Pacific rainfall leading to large-scale 
changes in global circulation and precipitation (Figure 4.1). It is these changes in circulation and 
precipitation that make ENSO a primary source for ISI predictability in remote regions and offer 
the potential for decision support and risk management. 

 
 

Scientific Basis for Prediction 
 

The advent of dynamic ENSO prediction can be traced back to Bjerknes’s conceptual 
model. While the phenomenon of the Southern Oscillation was discovered and applied to  
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FIGURE 4.1  ENSO impacts on seasonal climate. SOURCE: Adapted from CPC/NCEP/NOAA. 

 
 

seasonal prediction of the Indian monsoon in the early 1930s (Walker, 1932), the modern 
concept of ENSO was established three decades later by the pioneering work of Bjerknes (1966, 
1969) who visualized the linkage between the atmospheric Southern Oscillation and oceanic 
warming in the eastern Pacific (El Niño) via tight coupling among the sea surface temperature, 
surface winds, and precipitation. Bjerknes’s work laid a physical basis and a conceptual 
framework for ENSO prediction (Neelin et al., 1998; Burgers et al., 2005). The coupled 
instability mechanism described by Bjerknes (1969) works as follows. If a positive eastern 
equatorial SSTA exists, the temperature gradient between the eastern Pacific and the western 
Pacific is reduced, which then produces a weakening of the easterly trade winds, augmenting the 
warming in the eastern Pacific. The additional warming in the east further weakens the trade 
winds, constituting a coupled ocean–atmosphere positive feedback.  A reversal of the argument 
explains the growth of a cold event. This positive feedback between the SSTA and the 
atmospheric wind anomaly leads to a continually growing anomaly, although it does not provide 
an explanation for what causes the transition from one extreme state to the other. 

About the same time, independent but related theoretical findings coincidently emerged, 
i.e., the equatorial wave theory in an unbounded equatorial atmosphere (Matsuno, 1966) and in a 
finite ocean basin (Moore, 1968). These theoretical findings stimulated rapid development of the 
equatorial oceanography. In the 1970s and 1980s, Bjerknes’s conceptual model was transformed 
and expanded into theoretical and simple dynamical models, which advanced understanding of 

Wet and Cold 
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the basic ENSO dynamics, including coupled ocean-atmospheric instability, thermocline 
adjustment by oceanic waves, and mechanisms possibly sustaining ENSO and causing 
irregularity, non-stationarity, and skewness. The theoretical work has led to the understanding of 
destabilized equatorial waves (Philander et al., 1984) and a theory for the transition between 
warm and cold states (e.g., the so-called delayed or recharge oscillators, Suarez and Schopf, 
1988; Battisti and Hirst, 1989; Jin, 1997; Kirtman, 1997). Moreover, this theoretical 
understanding clearly delineates the scientific basis for ENSO prediction, namely that sub-
surface ocean thermal structure or thermocline displacements are pre-cursors for ENSO events 
and can be used to make forecasts. 

  
 

Forecast System Methodologies 
 

The pioneering El Niño forecast was made with an intermediate-complexity coupled 
ocean-atmosphere model (Cane et al., 1986). Since then, a variety of methods for ENSO 
prediction have flourished, including purely statistical techniques (e.g., Graham et al., 1987), 
combinations of dynamical and statistical models, and purely dynamic models (e.g., Ji et al., 
1994; Kleeman et al., 1995; Rosati et al., 1997; Berhinger et al., 1998; Stockdale et al., 1998; 
Schneider et al.,1999; Kirtman, 2003; Keenlyside et al., 2005; DeWitt, 2005; Gualdi et al., 2005; 
Jin et al., 2008). All of these forecasting strategies rely on four well-defined basic ingredients of 
a state-of-the-art prediction system: (1) a dynamical model (i.e., coupled GCM) that consists of a 
series of mathematical expressions or statistical relationships that represent the physical laws that 
govern how the ocean and atmosphere behave and interact; (2) an observing system to provide 
input for initializing, developing, and verifying both dynamic and statistical forecast systems; (3) 
initial conditions or an estimate of the current state of the climate system, usually based on 
sophisticated data assimilation systems; and (4) a series of retrospective forecasts for calibration 
and assessing quality. The models used in these forecasting strategies have varying degrees of 
sophistication and diverse initialization schemes.  

The importance of the observing system for the development of the statistical and 
dynamical prediction capability cannot be overstated.  NOAA’s Equatorial Pacific Climate Study 
program deployed the earliest buoys along 110°W and then along 140°W, starting with the 
prototype Atlas moorings in 1984–85.  This pioneering observational effort eventually led to the 
establishment of the mooring array along the entire equatorial Pacific basin. Development of the 
Tropical Atmosphere Ocean (TAO) array (Hayes et al., 1991) was further motivated by the 
1982–1983 El Niño event, the strongest of the century up to that time, which was neither 
predicted nor detected until nearly at its peak. The event highlighted the need for real-time data 
from the tropical Pacific for monitoring, prediction, and improved understanding of El Niño. 
Eventually, the TOGA-TAO array (now renamed TAO/TRITON, see “Ocean Observations” 
section in Chapter 3) was completed in 1994 to include 70 moorings.  The moorings provide 
winds, sea surface temperature, relative humidity, air temperature, and subsurface temperature at 
10 depths in the upper 500 m. Five moorings along the equator also measure ocean velocity. 
These data remain key components of operational ENSO prediction and continue to provide 
critical data for understanding ENSO-related physical processes.   
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FIGURE 4.2  Nino3.4 correlation coefficient (predictions versus observations) for retrospective 
forecasts plotted as a function of lead time. The red and yellow bars correspond to dynamical 
models: the Climate Forecast System (CFS) is a state-of-the-art model developed in the mid-
2000s (Saha et al. 2006), while the Coupled Model Project (CMP) prediction is older and was 
developed in the mid 1990s (Ji et al., 1995). CCA, CA, and MRK correspond to statistical 
models (Canonical Correlation Analysis, Constructed Analogues, Markov; see Appendix A). The 
figure highlights two points: (1) comparing the red and yellow bars indicates how coupled 
dynamical models have improved for this particular metric over the last two decades and (2) the 
statistical methods and the dynamical model methods are quite competitive with each other.  
Identical to Figure 3.14. SOURCE:  Adapted from Saha et al. (2006) 

 
 

Forecast Quality 
 

ENSO forecast quality has clearly improved from initial attempts in the late 1980s. 
Undoubtedly, this improvement is due to better models, enhanced observing systems, and better 
use of observational estimates through improved data assimilation techniques. In the late 1980s 
and early 1990s the state-of-the-art dynamical model forecast quality for ENSO markedly lagged 
behind most statistical techniques (Anderson et al. 1999). During the mid to late 1990s 
dynamical models began to make much better use of observational estimates of the state of the 
sub-surface ocean in the tropical Pacific, which led to notable improvements in forecast quality.  
Most recently, the dynamical models have become quite competitive with the statistical models 
in predicting the state of ENSO in the tropical Pacific (see Figure 4.2) as seen by comparing the 
red and yellow bars (dynamic models) with the remaining bars (statistical models). The 
unprecedented 1997–1998 El Niño was perhaps the first real-time test of modern ENSO 
prediction systems and was fairly well predicted three to six months in advance using a number 
of different state-of-the-art coupled GCMs (e.g., Anderson et al., 2003), although the models 
failed to capture its large amplitude and its rapid onset (Barnston et al., 1999).   
Figure 4.3 underscores the point that multi-model combinations can improve ENSO prediction 
skill as measured by, for example Nino3.4 correlation skill. It indicates that combining  
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FIGURE 4.3 Nino3.4 correlation coefficient (predictions vs. observations) for two U.S. models 
(red and blue lines) and a multi-model ensemble (black line). The figure indicates that multi-
model combinations improve this particular skill metric (black line is above the colored lines), 
that rapid progress on multi-model prediction in the United States can be made quickly (i.e., 
multi-model U.S. prediction systems are available today), and in comparison with Figures 2.11 
and 3.13, that significant seasonal dependence exists in the correlation. The correlation shown 
here shows a rapid drop in boreal spring. This is commonly referred to as the “spring prediction 
barrier,” but it is unknown if it is due to model errors or is a fundamental property of the climate 
system.  SOURCE: Kirtman and Min (2009).  
 
 
two U.S. national models improves this particular skill metric and suggests that the United States 
is indeed well positioned to make multi-model operational ENSO predictions. Finally, this 
figure, consistent with Figures 2.11 and 3.13, indicates that there is significant seasonality in the 
correlation; this seasonality is not fully understood. 

Most recently, the advances in ENSO prediction include: (1) the recognition that 
forecasts need to include quantitative information regarding uncertainty (i.e., probabilistic 
prediction) and that verification needs to include skill measures for probability forecasts 
(Kirtman, 2003); and (2) that a multi-model ensemble strategy (see Figures 2.9, 3.9, and 4.3) 
may be the best current approach for adequately quantifying forecast uncertainty.  Although an 
MME strategy represents the “best current approach” for estimating uncertainty, it should be 
noted an MME forecast does not quantify the relationship between individual model errors and 
forecast uncertainty.  The spread among the ensemble members can only provide a relative 
estimate of the forecast uncertainty.   
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How individual model errors contribute to forecast uncertainty is an active area of 
research.  In terms of quantifying how model error contributes to forecast uncertainty, a number 
of international projects have been organized, among which the most comprehensive projects are 
the European Union-sponsored Development of a European Multi-model Ensemble System for 
Seasonal to Inter-Annual Prediction (DEMETER; Palmer, 2004), the Climate Prediction and its 
Application to Society (CliPAS) project, sponsored by the Asian-Pacific Economic Cooperation 
(APEC) Climate Center (APCC), and the Climate System Historical Forecast Project (CHFP, 
Kirtman and Pirani, 2009). These hindcast datasets provide a test-bed for assessing forecast 
quality and forecast uncertainty based upon uncertainty in model formulation. The multi-model 
approach has proven to be more skillful than any single model (Krishnamurti et al., 1999, 2000; 
Doblas-Reyes et al., 2000; Shukla et al. 2000; Palmer et al., 2000; Jin et al., 2008; Kirtman and 
Min, 2009). For example, the Mean Square Skill Score (MSSS) against climatology is a good 
way to assess the deterministic skill of ENSO forecasts. In particular, it gives a measure of error 
relative to the signal strength; in this case, the signal is the forcing on the atmosphere by the 
ocean. State-of-the-art MSSS for Nino 3.4 SST at 5 months lead-time is about 0.7 for the best 
single models, and 0.75 for multi-model combinations. Despite the improvements associated 
with the multi-model approach, the ad hoc nature of the strategy is troubling (Blanke et al., 1997; 
Kessler and Kleeman, 2000; Boulanger et al., 2001; Lengaigne et al., 2003; Eisenman et al., 
2005; Vecchi et al., 2006; Gebbie et al., 2007; Jin et al., 2007; Kug et al., 2008; Kug et al., 2009; 
see “Multi-Model Ensembles section in Chapter 3).  

Comparing the correlation skill (i.e., correlation between forecast and observations) of 
different forecasting systems on common sets of forecasts shows that there has been slow but 
steady progress over the last 10 years. Again, this is highlighted by comparing the red and yellow 
bars in Figure 4.2. Improvement in ENSO SST forecasts is expected to continue in the years 
ahead—the errors in today’s forecasting systems are still substantial and statistical post-
processing and calibration improve forecast quality.  

Consideration of a set of individual forecasts shows that today’s models provide good 
guidance as to the future evolution of SST, but relatively large errors can still occur. Some of the 
failures in the past might be related to an inadequately observed initial state, and certainly some 
of these errors are related to model fidelity.  

The use of multi-model ensembles can give a definite boost to the quality compared to 
that obtained by a single model (e.g., Fedorov and Philander, 2001; Hagedorn et al., 2005; 
Codron et al., 2001; Guilyardi, 2006; Zhang et al., 2008; Jin et al., 2008; Kirtman and Min, 
2009), and multi-model approaches to ENSO prediction are encouraged. Nonetheless, 
improvement of the individual models is strongly needed to improve the quality of future 
forecasts (single or multi-model). Typically, models are used to produce ensemble forecasts in 
order to quantify uncertainty and estimate higher moments.  Forecast spread does vary according 
to season and ENSO phase in the models, but the relationship of forecast error to model spread is 
weak. For real applications, any model forecast needs to be post-processed in some way. 
Probabilistic verification of calibrated and post-processed forecasts is to be encouraged, but at 
the moment the information content of the forecasts is thought to be very largely dominated by 
the first moment, i.e. the ensemble mean. 
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Gaps in Understanding 
 

Our ability to predict ENSO with dynamical models has dramatically improved from the 
mid-1980s to the beginning of the 21st century. Past improvements were due to the convergence 
of many factors, including a theoretical understanding of coupled ocean-atmosphere dynamics, 
improvement of the coupled model forecast systems, and international efforts to observe and 
monitor conditions in the tropical Pacific. However, basic questions regarding our knowledge of 
physical processes in the tropical Pacific remain open challenges in the forecast community. For 
instance, it is unclear how the MJO, westerly wind bursts (WWBs), intra-seasonal variability or 
atmospheric weather noise influence predictability of ENSO (e.g., Thompson and Battisti, 2001; 
Kleeman et al., 2003; Flugel et al., 2004; Kirtman et al., 2005).  It has been suggested that 
enhanced MJO and WWB activity was related to the rapid onset and the relatively large 
amplitude of the 1997–1998 event (e.g., Vecchi and Harrison, 2000; Eisenman et al., 2005).  
However, more research is needed to fully understand the scale interactions between ENSO and 
the MJO and the degree that MJO/WWB representation is needed in ENSO prediction models to 
better resolve the range of possibilities for the evolution of ENSO (Wittenberg, 2004). Typically, 
prediction systems do not adequately capture the differences among different ENSO events 
(Goddard and DeWitt, 2005). In essence, the prediction systems do not have a sufficient number 
of degrees of freedom for ENSO as compared to nature. There are also apparent decadal 
variations in ENSO forecast quality (Balmaseda et al., 1995; Ji and Kousky, 1996; Kirtman and 
Schopf, 1998; Barnston and Tippett, 2009), and the sources of these variations are the subject of 
some debate. It is unclear whether these variations are just sampling issues or are due to some 
lower frequency changes in the background state (see Kirtman et al. 2005 for a detailed 
discussion). Chronic biases in the coupled models in their mean states and intrinsic ENSO modes 
remain, and it is believed that these biases have a deleterious effect on SSTA forecast quality and 
the associated teleconnections. Some of these errors are extremely well known throughout the 
coupled modeling community. Three classic examples, which are likely interdependent, are (1) 
the so-called double ITCZ problem, (2) the excessively strong equatorial cold tongue typical to 
most models, and (3) the eastern Pacific and Atlantic warm biases endemic to all models. Such 
biases may limit our ability to predict seasonal-to-interannual climate fluctuations and could be 
indicative of errors in the model formulations. Finally, it remains unclear how changes in the 
mean climate will ultimately affect ENSO predictability (Collins, 2000). 

In addition, procedural issues remain when initializing, making, and verifying ENSO 
forecasts.  Quantifying the relationship between model uncertainty and forecast uncertainty is an 
area of active research. For instance, in an individual model, it is possible to introduce stochastic 
physics schemes in order to approximate the uncertainty arising from the model 
parameterizations of unresolved sub-grid scale processes (Buizza et al., 1999; Shutts, 2005; 
Bowler et al., 2008). These approaches are operationally used by ECMWF and the United 
Kingdom Meteorological Office for medium-range forecasts and are being tested on the 
seasonal-to-interannual prediction problem. 

Other advancements include using novel data sets to initialize forecasts, particularly 
involving ocean data (Alves et al., 2004); moreover, other research indicates that forecast 
initialization strategies that are implemented within the framework of the coupled system as 
opposed to the individual component models may also lead to substantial improvements in skill 
(Chen et al., 1995).  
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MADDEN-JULIAN OSCILLATION (MJO) 

 
Scientific Basis for Prediction 

 
 The dominant form of intraseasonal atmospheric variability, particularly in terms of 
rainfall generation and global reach of influence, is most often referred to as the Madden-Julian 
Oscillation (MJO; also known as the 30–60 day, 40–50 day, and intraseasonal oscillation (ISO), 
after its discoverers, Madden and Julian, (1971, 1994, 2005)). The left panels of Figure 4.4 (see 
also Figure 2.6) illustrate the space-time structure of rainfall and low-level winds in the tropics 
associated with an MJO “event” during boreal winter, with the interval between maps being 12.5 
days.  These maps illustrate the eastward propagation of the MJO’s large-scale tropical rainfall 
anomalies. In conjunction with these rainfall anomalies are baroclinic wind anomalies, with 
upper tropospheric divergence (convergence) occurring in conjunction with positive (negative) 
rainfall anomalies and vice versa for the lower troposphere (see Waliser, 2006).  In addition, it 
can be seen that there is a significant modulation by the relatively warmer (cooler) eastern 
(western) hemisphere background state, with the large rainfall anomalies developing and 
propagating (~5 m s-1) over the warm waters of the Indian and west Pacific Oceans. Once the 
disturbances reach the vicinity of the International Date Line and the cooler eastern Pacific 
Ocean equatorial waters, the convection tends to subside and propagate southeastward into the 
South Pacific Convergence Zone.  Beyond the Date Line, the disturbance continues to propagate 
eastward (~15–20 m s-1) and tends to be evident only in the near-equatorial wind field. (Hendon 
and Salby, 1994).  

The off-equatorial structure of the MJO is also important, especially in relation to its 
connections to mid-latitudes.  For example, associated with the positive near-equatorial rainfall 
anomalies are upper-level cyclonic (anticyclonic) gyres to the northeast and southeast (northwest 
and southwest) centered at latitudes of about 20° (Rui and Wang, 1990; Hendon and Salby, 
1994).  These tropical heating and subtropical circulation anomalies act as Rossby wave sources 
for mid-latitude variability (e.g., Weickmann, 1983; Liebmann and Hartmann, 1984; Weickmann 
et al., 1985; Lau and Phillips, 1986; Sardeshmukh and Hoskins, 1988; Berbery and Nogues-
Paegle, 1993). Such connections with the extra-tropics have important ramifications for mid-
latitude weather variability, regime changes, and forecasting capabilities (e.g., Ferranti et al., 
1990; Higgins et al., 2000; Jones et al., 2004b). For example, Figure 4.5 illustrates the MJO 
influence on the mid-latitude circulation and its relationship with rainfall anomalies in the Pacific 
Northwest.  

The characteristics of the intraseasonal variability driven by the MJO tend to be most 
strongly exhibited during the boreal winter and spring when the Indo-Pacific warm pool is 
centered at or near the equator.  In the boreal summer, the MJO is still present, although its 
spatial variability and propagation characteristics are modified by the changes associated with 
the annual cycle. The right panels of Figure 4.4 illustrate the space-time structure of the MJO in 
boreal summer (for more in-depth observational descriptions see recent reviews by Goswami, 
2005; Hsu, 2005). Note that the summertime manifestation of the MJO is often referred to as the 
Intraseasonal Oscillation (ISO), the boreal summer ISO, or monsoon ISO (MISO). Examination 
of the boreal summer rainfall maps shows that positive rainfall anomalies in the western and 
central Indian Ocean occur in conjunction with negative rainfall anomalies over a region 
extending between India and the western equatorial Pacific. This system then appears to  
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FIGURE 4.4 Characteristic circulation and precipitation patterns associated with an MJO event.  
Anomalous winds at 850 hPa (vectors) and precipitation anomalies (red: wet anomaly; blue: dry 
anomaly) are shown for the periods prior (top panels, 12.5 days preceding the event), during 
(second from top panels), and after an event (bottom two panels, 12.5 and 25 days following the 
event).  Left panels show an event in the boreal winter (November–April); right panels are for 
the boreal summer (May–October).  SOURCE: Waliser (2006). 
  

 
propagate both eastward and northward (Yasunari, 1979; Lau and Chan, 1986; Lawrence and 
Webster, 2002; Hsu, 2005), similar to the boreal winter case. These large-scale rainfall variations 
have important implications for Asian monsoon onset and breaks.  

While the diagrams in Figure 4.4 illustrate what might be considered typical winter and 
summer MJO events, it is important to recognize that these events have considerably more 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

110 Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 
 

 

complexity in reality and exhibit significant interannual variability.  For example, the study by 
Wang and Rui (1990), and later by Jones et al. (2003), have further diagnosed the “synoptic 
climatology” of tropical MJO events, including their seasonal modulation.  These studies show 
that boreal winter events display considerable variation in the longitudes at which the convection 
develops and dissipates. Moreover, it is well known that the convection associated with MJO 
events typically propagates further east during El Nino events (e.g., Kessler, 2001).  Some of 
these features are illustrated in Figure 4.6.  For the boreal summer case, Kemball-Cook and 
Wang (2001) show that there is a systematic intraseasonal change in the spatial structure and 
propagation characteristics of the MJO.  In the early part of the summer (e.g., May-June), the  

 

 
FIGURE 4.5 Example of the relationship among tropical outgoing long-wave radiation (OLR, 
left column), which is used to define the phase of the MJO, wintertime (JFM) 500-hPa 
geopotential height anomalies (middle column), and precipitation anomalies (right column).  For 
example, Phase 5 (the middle row) of the MJO exhibits enhanced convection over the Maritime 
Continent that is accompanied by deep-troughing in the mid-troposphere over the North Pacific 
and enhanced precipitation in the Pacific Northwest. SOURCE: Adapted from Bond and Vecchi 
(2003).  

 
 

off-equatorial variability is generally found west of Southeast Asia and the Maritime Continent, 
while in the later part of the summer, it expands to include much of the northwestern Tropical 
Pacific.   

By the early 1990s, many physical characteristics of the MJO were documented and a 
number of reproducible features were recognized as occurring from one event to another as well 
as in events from one year to the next.  In addition, theoretical and modeling studies suggested 
that the coupling observed between organized convection and low-frequency equatorial waves 
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(e.g., Kelvin, Rossby) were responsible for the slow, eastward propagation of the MJO and thus 
suggested an unexploited form of intraseasonal predictability (e.g., Wang et al., 2005).  Given 
this and the emerging knowledge of the interactions of the MJO with other features of our 
weather and climate (e.g., Lau and Waliser, 2005; Waliser et al., 2005; Tian et al., 2007; 2008; 
Wong and Dessler, 2007), it was an obvious step to seriously consider MJO forecasting. 
 

 
FIGURE 4.6  Precipitation anomalies (mm/day) observed for three winter periods (1988–1989, 
1991–1992, and 1994–1995) illustrating the year-to-year differences in the location, magnitude, 
and rate of propagation of anomalies in convection near the Equator.  The colors indicate OLR 
anomalies, with red corresponding to suppressed convection and blue corresponding to enhanced 
convection. Essentially, large differences can exist among MJO events in different years.  
SOURCE: Courtesy of D. Waliser and B. Tian. 
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Predictability Estimates and Forecast System Developments 

 
Given that numerical weather and climate models typically have had, and still for the 

most part have, a relatively poor representation of the MJO (e.g., Slingo et al., 1996; Waliser et 
al., 2003a; Allen et al., 2005; Slingo et al., 2005; Kim et al., 2009), a natural avenue to consider 
for establishing an MJO forecasting capability was the development of empirical models. There 
were a number of different approaches and data sets used in these empirical studies, with most 
relying on linear approaches and quantities such as outgoing longwave radiation (OLR) and/or 
upper-level circulation quantities (von Storch and Xu, 1990; Waliser et al., 1999a; Jones et al., 
2004a; Mo, 2001; Wheeler and Weickmann, 2001; Goswami and Xavier, 2003; Webster and 
Hoyas, 2004).  The upshot of these studies is that empirical models demonstrate some accuracy 
in the prediction of the MJO on the order of 15–25 days or more, depending on the spatial scale 
and quantity being predicted.  However, as with any empirical model, these models are limited in 
the totality of the weather and climate system they can predict, their ability to adapt to arbitrary 
conditions, and their ability to take advantage of known physical constraints.   

To date, the majority of dynamical models still exhibit significant shortcomings in terms 
of their MJO simulation, particularly if pressed to do operational prediction.  There have been a 
few models or versions of models that have demonstrated success at representing a number of 
the principal features of the MJO (Slingo et al., 1996; Sperber et al., 1997; Waliser et al., 1999b; 
Kemball-Cook et al., 2002; Maloney, 2002; Fu et al., 2003; Zheng et al., 2004; Kim et al., 2009).  
This level of model success was suggestive that better representation of the MJO in operational 
prediction models was likely to lead to improved quality of intraseasonal predictions (Waliser et 
al., 2003b; 2003d; Liess et al., 2004) with the additional indication that ocean coupling may yield 
further enhancements (Fu et al., 2006; Zheng et al., 2004; Zhang et al., 2006; Woolnough et al., 
2007; Pegion and Kirtman, 2008). 
 
 

Forecast Performance 
 

Based on the results from empirical and dynamical modeling studies discussed above, 
there has been ample reason to push towards an operational MJO prediction capability. However, 
indications from early studies carried out in the context of operations showed little prediction 
quality due to the poor representation of the MJO in the models (Chen and Alpert, 1990; Lau and 
Chang, 1992; Jones et al., 2000; Hendon et al., 2000). In general these studies found reasonable 
accuracy only out to about 7–10 days for MJO-related variability, and were mainly hampered by 
MJO variability that was too weak and/or that propagated too fast.  Probably the most optimistic 
set of demonstrative hindcast skill experiments for the MJO were a set of Asian monsoon MJO 
case studies performed by Krishnamurti et al. (1990; 1992; 1995).  The novel approach in these 
cases was that an attempt was made to filter out the “weather” time and space scales from the 
initial conditions and leave only the “low-frequency modes.”  The hindcast results demonstrated 
reasonable accuracy out to 3–4 weeks; however, there are some uncertainties associated with 
making such a technique operational and with the handling of the boundary-layer forcing (i.e. 
SST).  More recent studies on this topic by Agudelo et al (2008) and Fu et al. (2009) raise 
questions as to the manner and degree that the fast time scales associated with processes such as 
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organized convection contribute to the overall forecast error, and suggest the need for further 
research in this area.  

Given the need for forecast capability at the intraseasonal time scale, along with the poor 
representation of the MJO in dynamical models, a number of real-time efforts have been 
developed based on empirical methods.  These include some of the schemes referenced above 
(Wheeler and Weickmann, 2001; Jones et al., 2004a; Wheeler and Hendon, 2004; Webster and 
Hoyas, 2004) as well as other novel techniques such as empirical wave propagation (EWP, van 
den Dool and Saha, 2002) and the use of a Linear Inverse Model (LIM, Winkler et al., 2001).  
Some of these techniques are being utilized in operational contexts, such as in forecast products 
at the Australian Bureau of Meteorology (ABOM; personal communication Matthew Wheeler) 
and the Global Tropics Benefits/Hazards Assessment at the National Centers for Environmental 
Prediction (NCEP, personal communication John Gottschalck). Given the developing reliance on 
the empirical forecast products mentioned above, it is important to note that many of them lie 
outside formal prediction centers and thus are only quasi-operational.  

While dynamical models have not simulated the MJO in a particularly faithful manner, 
there have been improvements in their performance.  An excellent example of improvement in 
forecast model quality is given in Figure 4.7, which shows the evolution of the ECMWF hindcast 
skill for the MJO during the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere 
Response Experiment (TOGA COARE) period (1992–1993). Notable improvements made to the 
model relative to the MJO had mostly to do with model parameterization changes including 
convection, clouds, radiation, and turbulent diffusion (Tompkins et al., 2007; Bechtold et al., 
2008). These model improvements have resulted in a present-day ECMWF forecast skill, as 
measured by anomaly correlation, of about 0.6 at lead times extending out to about 20 days for 
the large-scale spatial patterns of the MJO (e.g., Figure 4.4).  These values are competitive with 
if not better than the empirical models developed to date. 

Since the MJO is largely an atmospheric phenomenon, most of the predictability is 
thought to come from the atmospheric structure of the mode itself that tends to be relatively well 
captured by conventional synoptic and satellite observations available today.  However, there 
have been few studies that have addressed which aspects of the initial conditions of the 
atmospheric state are important to MJO forecasts.  The study by Vintzileos and Pan (2007) is an 
exception, as it illustrated that the prediction quality of the MJO in the NCEP CFS model was 
significantly more sensitive to the choice of initial conditions (in this case Reanalysis-2 versus 
GDAS operational) than to model resolution (in this case T62, T126, T254).  These types of 
issues for future work are discussed in the following section. 
 
 

Gaps in Understanding 
 

Based on the sorts of forecast activities and developments described above, there have 
been a number of efforts to take a more systematic and cross-community/center approach to 
MJO forecasting and model diagnosis.  This has included a number of workshops held in recent 
years (Zhang et al., 2001; Schubert et al., 2002; Waliser et al., 2003c; ECMWF, 2004; ICTP, 
2006; Sperber and Waliser, 2008) and efforts to develop cross-center/model experimental 
predictions (Waliser et al., 2005). These activities in turn helped to support and guide the 
formation of an MJO Working Group (MJOWG) under the auspices of U.S. CLIVAR.  The 
objectives of this working group included the development of model diagnostics (CLIVAR 
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Madden-Julian Oscillation Working Group, 2009) to facilitate model development, assessments 
and comparison, and application of these diagnostics to a number of contemporary weather and 
climate models (Kim et al., 2009).  Figure 4.8 shows wavenumber-frequency spectra for eight 
models (3 coupled and 5 uncoupled) and for observations/reanalysis. Although a couple of the 
models exhibit sizeable intraseasonal variability, none of these models provides a robust 
representation of the dominance of the variability at wavenumbers 1–3 and 30–80 days. Note the 
30– and 80–day designations as vertical lines.  In addition, common shortcomings among the  

 
FIGURE 4.7 Improvements in forecasts of tropical outgoing long-wave radiation (OLR) from 
October 2004 to September 2009 over time.  The time-longitude diagrams show the averaged 
outgoing long-wave radiation (OLR) near the Equator from observations and a series of forecasts 
for the period December 29, 1992 (top of panels) to February 15, 1993 (bottom of panels) with a 
lead time of 15-days from various versions of the ECWMF operational forecast model.  The 
earlier version of the model performs poorly (labeled “10/04”), while the later version replicates 
(labeled “09/09”) more features of the observations.  Cycle identification and the date it became 
operational are given at the top and bottom of each panel, respectively.  Red shading represents 
positive OLR anomalies and blue shading represents negative OLR anomalies. SOURCE: 
ECMWF; Bechtold et al. (2008); updates courtesy of Frederic Vitart (ECMWF). 

 
 

models include weak and/or incoherent eastward propagation, particularly across the Maritime 
Continent, and difficulties representing the vertical structure associated with water vapor, clouds, 
and convective processes.   

To facilitate more substantial gains in the operational context, the MJOWG developed an 
MJO forecast metric (adapted from Wheeler and Hendon, 2004), and along with the Working 
Group on Numerical Experimentation (WGNE) facilitated its adoption by a number of 
operational forecast centers.  In addition, MJOWG has worked with CPC/NOAA to aggregate, 
display, and disseminate its real-time forecasts in a uniform manner (Gottschalck et al., 2010).  
The motivation for having such a metric is that it allows for a more quantitative assessment of 
forecast quality, the ability to track model forecast quality over time, the capability to measure 
potential model improvements relative to the MJO, and the means to develop a multi-model 
ensemble forecast of the MJO.  The motivation for improving MJO forecasts and the means to 
evaluate them involve not only the MJO itself but extend to other weather patterns it influences 
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and interacts with such as extratropical weather patterns (e.g., Ferranti et al. 1990; Bond and 
Vecchi 2003; Jones et al. 2004a, b; Vecchi and Bond, 2004) and tropical cyclones (e.g., Maloney 
and Hartmann, 2000; Vitart et al. 2010).  Given the importance of the MJO in terms of its 
contribution to ISI predictability, the above programmatic research work started by the US 
CLIVAR Working Group has been extended through the recent formation of a WCRP-
WWPR/THORPEX MJO Task Force  (see http://www.ucar.edu/yotc/mjo.html).  

 
FIGURE 4.8  Precipitation and wind variability generated by dynamical models serve as a poor 
match to observations. The first panel (a) shows the observations of November–April 
wavenumber-frequency spectra (wavenumbers on the y-axis; temporal frequency on the x-axis) 
of averaged precipitation (shaded) and 850-hPa zonal wind (contoured), near the Equator. Very 
few of the models (b–i) exhibit rainfall or wind variability similar to that of the observations. The 
vertical lines indicate the spectral region where variability “should” be occurring. Units for the 
precipitation (zonal wind) spectrum are mm2 day-2 (m2 s-2) per frequency interval per 
wavenumber interval. SOURCE: Kim et al. (2009). 
 
 

While the above efforts will facilitate continued development and improvements in 
operational MJO predictions, it is certain that capturing the forecast quality associated with the 
MJO is most strongly hampered by the systematic biases in the models, such as those illustrated 
in Figure 4.8.  Rectifying these will likely require more examination and understanding of the 
vertical structure of clouds and associated diabatic heating (Lin et al., 2004; Jiang et al., 2009; Fu 
and Wang, 2009), cloud-radiative interactions (Lee et al., 2001; Lin and Mapes, 2004), 
microphysical processes (Tompkins et al., 2007; Waliser et al., 2009), interactions with the 
surface (Maloney and Sobel, 2004; Sobel et al., 2008) and the fine-scale structure embedded in 
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the MJO (Nakazawa, 1988; Lau et al., 1991; Chen et al., 1996; Moncrieff, 2004; Moncrieff and 
Liu, 2006; Majda and Stechmann, 2009).   

In addition, there are a number of operational and implementation issues that need to be 
explored. For example, given that most of the predictability of the MJO is thought to reside in its 
large-scale atmospheric structure suggests that its state can be well captured by the conventional 
synoptic and satellite observations available today.  However there have been few studies that 
identify which aspects of the initial conditions of the atmospheric state are important to MJO 
forecasts, as mentioned above (see Vintzileos and Pan, 2007). Apart from the prominence of the 
atmospheric state to the MJO, there are a host of theoretical and modeling studies that suggest 
the SST and mixed-layer heat content are important in the evolution of the MJO and thus are 
quantities that need to be represented accurately in the initial conditions and subsequent 
prediction model evolution (Fu et al., 2003; Zheng et al., 2004; Fu et al., 2006; Zhang et al., 
2006; Woolnough et al., 2007; Pegion and Kirtman, 2008). Also, the initiation mechanism(s) 
associated with the MJO in the eastern/central Indian Ocean represents a significant outstanding 
question that impacts the development of MJO forecasting.  A number of these issues will be 
explored through the analysis of the multi-model hindcast data set that was specifically designed 
for examination of the predictability and prediction sensitivities of the MJO and the development 
of multi-model ensemble strategies (see http://www.ucar.edu/yotc/iso.html).  Moreover, field 
studies such as the upcoming DYNAMO/CINDY campaign in the Indian Ocean in late 2011 
through early 2012 will be helpful to address the questions concerning MJO initiation.  
Additional discussion on the above issues and recommendations for ways forward can be found 
in numerous studies (Zhang, 2005; Waliser, 2006; Moncrieff et al., 2007; Sperber and Waliser, 
2008; Waliser and Moncrieff, 2008; Gottschalck et al., 2010). 

 
 

SOIL MOISTURE 
 

The use of realistic soil moisture initialization can potentially improve precipitation and 
air temperature forecasts on ISI time scales.  The mechanistic pathway can be described through 
a hypothetical situation.  Consider a soil that is anomalously wet at the beginning of a forecast 
period.  Due to the inherent memory associated with soil moisture, the anomaly would likely 
persist for several weeks, and during this time period, the evaporation rate from the land surface 
would likely be anomalously high.  High evaporation, in turn, could lead to anomalously cool 
surface temperatures as a consequence of enhanced evaporative cooling.  In addition, the 
anomalously high rate of evaporation could affect the atmosphere (e.g., changes to the boundary 
layer structure, humidity), which could increase the chance or amount of precipitation. 

While easy to describe, many of the mechanisms involved are profoundly complex and 
are not yet fully understood, particularly those associated with the impacts of evaporation on rain 
generation.  Understanding and quantifying the contribution of soil moisture initialization to 
climate forecast quality is the focus of many recent studies. 
 

 
Scientific Basis for Prediction 

 
Energy and water are naturally conserved at the land surface, and the energy balance and 

water balance equations share a common term: evaporation.  Through the energy balance, higher 
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evaporation means a greater evaporative cooling of the land surface, which can translate to 
cooler air temperatures, as noted above.  It can also, through both balances, affect precipitation—
the lower sensible heat flux associated with higher evaporation can lead to shallower boundary 
layers and thus an easier build-up of the conditions that trigger convective rainfall (Betts et al. 
1994), and the evaporation itself can serve as a moisture source.  However, under certain (and 
probably rarer) conditions, higher evaporation rates may have the opposite effect—they may act 
to inhibit precipitation (Findell and Eltahir, 2003; Cook et al., 2006).   

One of the chief controls over evaporation in many parts of the world is soil moisture.  If 
the soil is not too wet to begin with, higher soil moisture tends to lead to higher evaporation; 
evaporation in many parts of the world is water-limited.  (Soil moisture has an additional, 
secondary effect on the surface energy balance, and thus evaporation, through its impact on the 
surface albedo.)  Thus, in a forecast system, if soil moisture could be accurately predicted, then 
evaporation could be better predicted, with potentially positive impacts on the prediction of 
precipitation and air temperature (see Figure 4.9)  Soil moisture can in fact be predicted 
reasonably well at subseasonal timescales due to its inherent memory; observational studies 
(Vinnikov and Yeserkepova, 1991; Vinnikov et al., 1996; Entin et al., 2000) show that this 
memory is of the order of weeks to months, much longer than that of tropospheric variables.  
Note that the role of soil moisture in prediction is in some ways complementary to that of SSTs.  
While the timescale of soil moisture memory pales relative to that of ocean processes, the effects 
of soil moisture tend to be local and can help make up for a lack of teleconnection between 
forecasted SSTs and midlatitude continental weather during summer (Koster et al., 2000). 

 
FIGURE 4.9  Simplified schematic showing how soil moisture anomalies can feed back on 
precipitation.  In segment A of the cycle, a positive soil moisture anomaly leads to a positive 
evaporation anomaly (assuming evaporation is in a soil moisture-limited regime), and this in turn 
reduces the positive soil moisture anomaly.  In segment B, a positive evaporation anomaly can 
lead to a positive precipitation anomaly, though in certain situations, it can instead lead to a 
negative precipitation anomaly.  In segment C, a positive precipitation anomaly leads to a 
positive soil moisture anomaly. SOURCE: Seneviratne et al. (2010). 
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Naturally, given its potential, much research has focused on assessing the usefulness of 
soil moisture initialization in a forecast system.  The first step is to examine how soil moisture 
variations help guide the evolution of atmospheric variables.  The atmospheric general 
circulation model (AGCM) environment is a natural place to examine this, given the limitations 
of purely observation-based studies.  Using observations, for example, to garner evidence of soil 
moisture impact on precipitation is difficult because the reverse direction of causality is 
overwhelmingly dominant—when rainfall is high, the soil gets wet.  Some research has looked at 
lagged correlations between observed soil moisture and precipitation (does a wet soil tend to 
precede an anomalously high rainfall?), but even such lagged statistics cannot prove causality, 
given that the rainfall itself may have some long memory associated with it, as induced by 
remote SSTs, for example.  With an AGCM, dominant directions of causality can be artificially 
disabled, allowing the lesser and potentially interesting ones to be isolated and quantified, at least 
for the biased AGCM climate. 

Such AGCM studies can be segregated into two categories.  The first involves assessing 
the response of the atmospheric variables to the prescription of soil moisture throughout the 
simulation period.  In these studies, no thought is given to soil moisture prediction itself; soil 
moisture is in essence assumed to be “perfectly forecasted.”  Shukla and Mintz (1982) 
demonstrated with an AGCM that a very dry land surface produces a substantially different 
climate response than a very wet surface.  Numerous further studies have since shown that: (1) a 
suitably wet or dry soil moisture boundary condition can generate precipitation and runoff 
extremes (droughts and floods; e.g., Atlas et al., 1993; Hong and Kalnay, 2000), and (2) 
prescribed, more subtle variations in soil moisture lead to correspondingly subtle yet still 
measurable variations in precipitation and air temperature (e.g., Delworth and Manabe, 1989; 
Koster et al., 2000; Dirmeyer, 2000; Douville et al., 2001), if only in certain regions. 

Such studies were formalized recently in GLACE (the Global Land-Atmosphere 
Coupling Experiment), a Global Energy and Water Cycle Experiment (GEWEX) and CLIVAR-
sponsored international project (Koster et al., 2006; Guo et al., 2006).  The GLACE project 
involved a dozen state-of-the-art AGCMs, each performing precisely the same numerical 
experiment, one designed specifically to quantify the degree to which the time evolution of 
simulated precipitation and air temperature can be guided through the specification of the (time 
and space-varying) soil moisture state.  GLACE produced two main results: (1) AGCMs differ 
significantly in their estimates of how soil moisture variations affect precipitation and air 
temperature, and (2) they do nevertheless tend to agree that certain regions during certain times 
of year are more prone to soil moisture impacts on the atmosphere than others. 

The regions for which the GLACE models show some consensus regarding impact are 
indicated in Figure 4.10.  These areas are generally transition zones between wet and dry areas—
regions like the U.S. Great Plains, which lies between the arid west and the humid east.  
Mechanistically, the relative importance of these transition zones for land-atmosphere coupling 
makes perfect sense; in regions that are too arid, evaporation variations are too small to affect the 
atmosphere, and in regions that are too wet, soil moisture availability does not limit evaporation 
(energy availability, through radiation, does instead), so that soil moisture variations are not 
translated into evaporation variations.  These mechanistic controls have indeed been 
demonstrated outside of GLACE through various specially designed AGCM experiments.  
Fortuitously, satellite retrievals of soil moisture are generally reliable in these transition zones, 
where the vegetation is not too dense. 
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The second category of purely model-based studies focuses on the degree to which soil 
moisture initialization can affect the subsequent simulation of atmospheric variables. These 
studies do address the prediction of soil moisture since it is not prescribed throughout the 
forecast period—soil moisture and atmospheric variables are free to evolve together.  Large 
initial soil moisture anomalies have been found to have a significant impact on subsequent 
precipitation (e.g., Rind, 1982; Oglesby and Erickson, 1999).  Less extreme anomalies produce 
correspondingly more subtle impacts on the atmosphere, with some studies showing an almost  

 
FIGURE 4.10.  Areas for which the numerical models participating in the GLACE study tend to 
agree that variations in soil moisture exert some control on variations in precipitation.  The 
variable plotted is the average across models of a land-atmosphere coupling strength diagnostic; 
the insets show how the magnitude of this diagnostic differs amongst the participating models.  
SOURCE: Koster et al. (2004). 
 
 
negligible impact on (model-specific) precipitation predictions (though significant impact on air 
temperature predictions) associated with soil moisture initialization (e.g., Schlosser and Milly, 
2002). 

 
Forecast System Methodologies 

 
Dynamical models used in forecasting rely on the initial state of soil moisture, which is 

provided by observations.  As explained in Chapter 3 (“Land Observations” and “Data 
Assimilation” sections), analysis products provide the most useable data for forecasts, as they 
can provide information about soil moisture at broad spatial scales.  In particular, the application 
of Land Data Assimilation Systems (LDAS) to raw meteorological observations (e.g., 
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temperature, humidity, precipitation, winds) can greatly improve the initialization of soil 
moisture in dynamical models.  The expected state-of-the-art for soil moisture initialization in 
coming years involves extending LDAS to include assimilated satellite information (soil 
moisture retrievals or the raw radiance measurements). 

Statistical forecast models can also make use of such soil moisture information.  For 
example, the Constructed Analogue technique (see “Constructed Analogs” section in Chapter 3) 
of van den Dool et al. (2003) makes use of historical soil moisture patterns to infer the evolution 
of soil moisture, temperature, and precipitation from present soil moisture patterns. 

 
 

Forecast Performance 
 

The obvious extensions to the idealized, model-based studies discussed in “Scientific 
Basis for Prediction” section are studies that use true forecast systems and observations of 
forecasted variables to examine the degree to which realistic soil moisture initialization improves 
forecast quality.  Fennessy and Shukla (1999), for example, examined increases in accuracy 
derived from a proxy analysis-based soil moisture dataset.  Douville and Chauvin (2000) 
initialized their model with soil moisture estimates derived from the Global Soil Wetness Project, 
and Viterbo and Betts (1999) examined the impact of soil moistures derived from the ERA-15 
reanalysis on the simulation of the 1993 Mississippi flood.  Koster et al. (2004) examined 15 
years worth of forecasts (5 independent forecasts per year) to quantify forecast accuracy from a 
relatively sizeable set of forecasts.  These studies, and others like them, strongly suggest that 
realistic soil moisture initialization can provide some increase in the quality of precipitation and 
air temperature prediction out to a month or more. 

In an attempt to generate a multi-model “consensus” view of how realistic land 
initialization affects forecast quality, several modeling groups have recently embarked on the 
GLACE-2 project.  In this project, the participants perform two parallel sets of forecasts: one in 
which land surface states, particularly soil moisture, are initialized realistically and one in which 
they are not.  A comparison of the skill (square of correlation relative to observations) derived 
from these two sets allows a direct quantification of the impact of land initialization on forecast 
quality.  The experiment is ongoing; first results show that across the models, land initialization 
does improve the correlation skill of temperature forecasts out to 60 days.  The correlation skill 
increases substantially when conditioned on the size of the initial (local) soil moisture anomaly 
(see Figure 4.11).   

The patterns in Figure 4.11 differ somewhat from those in Figure 4.10. These apparent 
discrepancies might be explained in several ways. First, the original GLACE examined the 
ability of imposed soil moisture variations to influence the atmosphere, whereas GLACE-2 
examined the full prediction question, which also involves the ability of a model to retain an 
initial soil moisture anomaly through a forecast period. Analyses of model-generated soil 
moisture memory (e.g., Seneviratne et al. 2006a) suggest that the south central United States has 
a reduced soil moisture memory relative to the north central region, perhaps hindering the 
generation of skill there. Sampling error may also be a factor. In addition, results from the two 
GLACE experiments almost certainly differ because the first was purely synthetic—the patterns 
produced in the original GLACE experiment necessarily reflect the biased climatologies of the 
models, possibly shifting, for example, the area of high land-atmosphere coupling in the north 
central U.S. toward the west relative to that implied by the GLACE-2 results. The GLACE-2 
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experiment was not synthetic, and thus the patterns produced are controlled by both the 
climatology inherent in nature (through the realistic initialization) and by the ability of the 
models to perform realistically during the forecast. 

Regarding precipitation, the consensus from GLACE-2 is less robust.  The results do 
show, however, some small land-related increases in accuracy for precipitation out to at least 45 
days, again especially when conditioned on the initial anomaly (Koster et al., 2010), and again 
especially in the north central United States. 

 

 
 

FIGURE 4.11.  Conditional improvement in forecast accuracy for air temperature related to 
improved land initialization. “Warm” colors indicate areas where accuracy is gained when 
realistic land initialization is used.  The metric plotted represents the square of the correlation 
coefficient (R2) obtained with realistic land initialization minus the R2 value obtained without it. 
The quantity predicted and compared to observations is the average air temperature over days 
31–45 of the forecast.  Forecasts at a given location are conditioned on the initial soil moisture at 
that location—only those start dates for which the initial soil moisture lies in the lowest or 
highest quintile of all realized values are used in the calculation.  Adapted from Koster et al. 
(2010). 

 
Some statistical analyses have addressed the potential impacts of soil moisture on skill 

(e.g., Karl, 1986; Huang et al., 1996b).  These also point to the interior of North America as the 
place to find positive correlations between soil moisture and future temperature, though not 
always in the same locations. 
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Gaps in Understanding 

 
While improvements to satellite retrievals and LDAS can improve the initialization of 

soil moisture, improving our understanding of the physical processes linking soil moisture to 
precipitation remains critical to exploiting the benefit of soil moisture to forecast quality, 
especially with respect to its impact on precipitation. The insets in Figure 4.10 above highlight 
the fact that models differ widely in their assessment of soil moisture’s ability to affect 
precipitation.  This ability, the “land-atmosphere coupling strength”, underlies any contribution 
made by soil moisture initialization to precipitation prediction.  (Similar inter-model variability 
is seen for the soil moisture—temperature connection.)  As suggested above, we cannot even say 
which model performs best because the effective coupling strength operating in nature cannot be 
directly measured.  Only indirect estimates are available, so only these can be used for model 
evaluation.  The best way to do this is still unclear. 

Presumably, an accurate simulation of land-atmosphere coupling relies on an accurate 
simulation of the complex and interacting model formulations that contribute to it.  Work is 
needed to evaluate and improve model formulations of soil-moisture limited evaporation, 
turbulent transport from the land surface, atmospheric boundary layer generation, and moist 
convection, among other processes.  The global distributions of the parameters (e.g., effective 
soil texture at large scale) that control some of these processes are often crudely estimated; work 
(possibly involving calibration) is needed to improve these fields.  Additional work is needed to 
ensure that the simulated processes interact with each other in realistic ways. 

Of course, even if all model formulations, and thus the simulated coupling strength, were 
perfect, prediction quality would still be limited by deficiencies in our ability to assign realistic 
global distributions of soil moisture initial conditions.  As noted above, the expected state-of-the-
art in the coming years is the production of soil moisture fields through data assimilation systems 
utilizing satellite data; even so, these estimates will be limited by errors in the meteorological 
forcing fields and retrieval estimates.  The incremental improvement of satellite soil moisture 
retrievals (or the corresponding raw radiances) on the effectiveness of the soil moistures used in 
a forecast system is yet to be established. 

Several facets of soil moisture’s impact on precipitation and temperature forecast quality 
are still largely unexplored.  For example, soil moisture’s contribution to the accuracy of climate 
predictions may be larger for certain background climatic conditions.  For a given region, can we 
expect the impact of soil moisture to be greater under certain SST and atmospheric circulation 
regimes, or for modified conditions associated with global climate change (Seneviratne et al., 
2006b)?  The time is ripe, and modeling systems are adequately advanced to address such 
questions. 

Finally, in regard to ISI forecasting, we note that the value of soil moisture initialization 
is not necessarily limited to the prediction of meteorological variables.  For example, water 
resource estimates in regions with significant snowpack are often made months in advance by 
estimating snow amounts—a greater amount of snow implies a greater amount of meltwater 
during the spring season and thus greater streamflow.  However, the future streamflow can also 
depend on soil moisture.  If the soil is dry below a melting snowpack, much of the meltwater 
may infiltrate the soil and then evaporate, and would not then be available to contribute to 
streamflow and thereby reservoir storage.  On the other hand, if the soil is wet, a greater amount 
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of the meltwater may flow into streams.  This potential use of wintertime soil moisture to add 
skill to springtime water resources prediction is not yet fully tapped. 
 
 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

124 

 
 

5 
Best Practices 

 
 
The scientific and programmatic challenges identified in our discussion of the basic 

building blocks of ISI prediction systems (i.e., Chapter 3) and the case studies of Chapter 4 have 
common themes that naturally lead to a discussion of “Best Practices.” Essentially, Best 
Practices aim to answer the following: 

 
• How can we improve prediction systems and the provision of forecasts?   
• Given that both qualitative and quantitative improvements in seasonal forecasts are 

possible, how do we begin to map a path forward?  
 

“Best Practices” is an optimum process, assessing forecast quality and enabling 
productive interactions among the various ISI forecasting communities (e.g., users, developers, 
providers, researchers).  The discussion of Best Practices necessarily cuts across the details of 
how forecasts are evaluated and shared to more programmatic issues of how operational centers 
collaborate with the outside community.  Specifically, four important aspects of Best Practices 
for the production, reproduction, evaluation, and dissemination of ISI forecasts are presented: 
public archives of forecast information, forecast metrics, more useful forecast products, and an 
improved synergy between operational and academic communities. 
 

 
PUBLIC ARCHIVES 

 
Transparency and reproducibility are essential for assessing and improving ISI forecast 

quality and enhancing communication among operational centers, researchers, and users.  
Currently, it can be difficult to determine or access the inputs (e.g., observations) and methods 
(e.g., models, data assimilation schemes, subjective input) that underlie a particular forecast.  
Likewise, many forecast products (e.g., hindcasts, analyses, forecasts, re-analyses, re-forecasts, 
verifications, outlooks) may not be archived or the existing archives may not be publically 
accessible.  As noted in several instances by this report, valuable research has been preformed 
when such data sets are available (e.g. CMIP, ENSEMBLES, DEMETER).  For many of these 
projects, international collaborations were enabled by the availability of forecast data.  Ensuring 
that forecast centers establish and maintain archives is important to bolster these collaborations 
among forecast centers and to continue the large-scale assessment and comparison of prediction 
systems.   

Assessing current ISI forecast performance, making comparisons among forecast 
systems, devising strategies for improving forecasts, and understanding the impact of a change to 
a forecast system (e.g., incorporation of new observations, updates to model parameters) all 
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require the existence of publically accessible and comprehensive archives.  Documentation and 
archiving of data, models, methods, and products by operational centers would serve as an 
integral step to assessing and ultimately improving ISI forecast quality.  This is especially the 
case if attribution of forecast improvements to specific proposed/implemented changes to the 
system is desired.  The observing systems will evolve and studies are needed to assess and guide 
that evolution from the perspective of the role of observations in ISI forecasting. 

Given that subjective intervention is a component of many forecast systems, it is 
important that the objective inputs can be easily separated from the subjective final product for 
independent analysis and appraisal. This separation is necessary for assessing whether the 
objective elements are improving and whether improvements in observations, understanding, or 
models, or some combination, are having a positive impact. Similarly, for forecast systems that 
combine statistical and dynamical prediction techniques, it is important to be able to separate the 
contributions from each component.   

 
 

METRICS  
 

Evaluating ISI forecast quality requires a set of well-defined model performance and 
forecast metrics that can be applied to current and future prediction systems. Forecast metrics 
need to include both deterministic and probabilistic measures. Model performance metrics, 
which in this case are generally associated with dynamical models, need to include measures of 
model success in representing the mean climate, forced variability (e.g., diurnal and annual 
cycles), unforced variability (e.g., ENSO, MJO, PNA) and key physical processes (e.g., 
convection, fluxes, tropical waves).  Multiple metrics are recommended since no single variable 
or metric is sufficient to fully characterize model and forecast quality for multiple user 
communities. These aspects include, but are not limited to, measures of bias (correspondence 
between the mean forecast and the mean observation), accuracy (the level of agreement between 
the forecast and the observation), reliability (the average agreement between the forecast values 
and the observed values when the forecasts are stratified into different categories, e.g., 
conditional bias), resolution (the ability of the forecast to sort or resolve the set of events into 
subsets with different frequency distributions), sharpness (the tendency of a forecast to predict 
extreme values), and discrimination (the ability of a forecast to discriminate between 
observations to have a higher prediction frequency for an outcome when an outcome occurs).   

Regardless of which metrics are used, the following properties are necessary for a set of 
metrics: 

 
• Provide the ability to track forecast quality to determine if models are improving.  This 

implies that the uncertainty in the skill statistics needs to be quantified. 
• Provide some feedback on model strengths and weaknesses in providing an accurate 

forecast. 
• Allow forecasts from different systems to be compared to identify which system is 

superior. 
• Provide information on metric uncertainty.  This allows for forecast consistency to be 

evaluated. 
• Include a justifiable baseline of forecast quality for comparison.   
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The WMO Standard Verification System (SVS) for Long Range Forecasts (LRF) and the 
text by Jolliffe and Stephenson (2003) are excellent starting points for developing these metrics, 
but additional metrics will need to be developed as forecasts and their use evolve.  For example, 
until recently there was no well-accepted and documented forecast metric for the MJO 
(Gottschalck et al. 2010).  Examples of model performance metrics for the MJO include those 
developed by U.S. CLIVAR (see section MJO case study in Chapter 4; CLIVAR MJO Working 
Group, 2009).  A number of programmatic activities have interest in developing model 
performance metrics that would be applicable to models used in ISI forecasting (e.g. GEWEX 
Cloud System Study (GCSS), Climate Historical Forecast Project (CHFP), and Climate Process 
Teams (CPT)). Such consideration of metrics and their development only reinforces the need for 
open and easy access to forecast information as discussed above. 

 
 

MORE USEFUL FORECAST PRODUCTS 
 
 The promise that climate forecast information may benefit society through improved 
decisions and climate risk management motivates much of the human and fiscal investments in 
the research and production of these forecasts. Although it is often assumed that climate 
forecasts would be used more if they were of better quality, other factors are often cited as 
equally important, including the retrospective forecast performance, the societal and scientific 
relevance of the forecast variables and their specificity, and the manner in which the forecast is 
communicated. 

The forecasts have to be probabilistic, as estimates of the state of the climate system are 
inherently probabilistic. Decision makers are accustomed to using uncertain information; risk is 
by definition probabilistic. But, use of probabilistic climate forecasts requires information 
regarding the reliability of the probabilities. Thus, additional information is needed on past 
performance of the prediction inputs and the overall forecast system, or the data have to be 
available for users to assess the forecast system based on their own requirements. If the 
reliability of the forecast probabilities is unknown, users often subjectively fold in additional 
uncertainty to the probabilities, which reduces the usefulness of the forecast.  Even if there is a 
no-skill forecast, users need to be made aware of it either in a raw data or graphical format.  It is 
important to document no-skill forecasts, recognizing that conditional skill may exist for a 
particular variable and region (i.e., areas with no-skill forecasts during one season may have 
useful forecasts during a different season).  In addition, for the purposes of tracking forecasts 
over time, users may potentially find such information helpful.  However, even if a forecast is 
labeled as “no-skill,” information on the historical climatology can still be provided to indicate 
the range of possibilities seen in past years.   

Beyond providing information on the forecast quality, the forecast variables have to be 
relevant for the decision maker. Much of the ISI forecast verification to date has involved 
variables such as the Nino3.4 index, and even more recently the phase of the MJO.  These 
variables are arguably distant from the needs of end users, who might instead require information 
on precipitation or air temperature over populated regions.  Information on seasonal rainfall 
totals or average seasonal temperature may in turn be less important than the frequency and 
duration of dry spells or heat waves, or favorable conditions for tropical cyclone formation. 
Moreover, given that many decisions are triggered by risk of threshold crossings (e.g., not 
enough rain, overly high temperatures), the events or categories for which probabilities are 
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provided need to be determined by these conditions.  Other decisions might be strongly tied to 
spatial considerations; for example, in some cases a large basin-scale pattern might be relevant 
and in others the evolution of a given variable at a specific model grid-box location might be 
needed. Some studies have demonstrated significant associations between ENSO events and 
societally relevant weather variability, such as mid-Atlantic winter storms (Hirsch et al., 2001) 
and variability in peak wind gusts (Enloe et al., 2004), but these have not been translated into 
operational products. Operational forecast centers may address some of these needs in 
collaboration with certain decision or policy makers, but because forecast needs are typically 
sector-specific and even region-specific, they cannot anticipate every decision setting. If the 
forecast data and tools are made available as discussed above it will be possible for users to tailor 
their own forecasts.  

While not all end-users of the forecasts will be willing or able to tailor forecast 
information themselves, it is necessary to remember that users of climate prediction information 
encompass more than end-users or decision makers. Sectoral scientists that develop system 
analyses and decision models use climate prediction information as input to their models. Also, 
climate scientists who conduct research in areas including process studies, multi-model 
ensembles, and downscaling use climate prediction data. These scientists add considerable value 
to the development and improvement of the ISI prediction process. By working together with the 
end-users or decision makers, such intermediaries can help society realize the value of ISI 
forecasts.  

 
 

ACCELERATED SYNERGY WITH THE RESEARCH COMMUNITY 
 

There are too many major science directions for possible improvements of operational 
systems to be examined and implemented by either the operational centers or the research 
community alone.  Each community has its own strengths and purpose: operational centers excel 
in creating robust and reliable forecasting systems using state-of-the-art models, observations 
and data assimilation systems; academic researchers excel in developing new ideas and 
approaches.  Large-scale scientific challenges can often exceed the capacity of each group acting 
alone with respect to extreme infrastructure demands (e.g., computational resources), ancillary 
but important expertise (e.g, satellite or in situ measurement development) or the need for 
interdisciplinary approaches and expertise.  This necessitates collaboration.  Efforts to improve 
ISI forecasting should enhance communication and interaction between these communities while 
drawing on their complementary strengths and differentiated roles.  

In terms of accelerating this synergy, the committee noted two positive examples. First, 
ECMWF has an annual targeted workshop with a specific focus of improving some particular 
element of the operational prediction system (e.g., data assimilation system, estimates of forecast 
uncertainty). External visitors are invited to not only make presentations, but more importantly to 
chair breakout groups that provide detailed and specific recommendations to the center. This 
activity is effective because the outside community welcomes the opportunity to affect and 
improve operational prediction, and because the center is committed to be responsive to the 
breakout group recommendation. The second example is the ongoing NOAA/NCEP Climate 
Test-bed seminar series. This particular seminar series has speakers from both the operational 
centers and the outside research community.  The location of the seminars rotates through COLA 
(Center for Ocean-Land-Atmosphere Studies, Calverton, MD), ESSIC (Earth System Science 
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Interdisciplinary Center, University of Maryland) and NCEP, with the intention of having the 
operational scientists speak at the research centers and the external scientists speak at NCEP, 
thus fostering cross fertilization between operations and research. 
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6 
Recommendations and Remarks  

on Implementation 
 
 

In this report, the assessment of prediction capabilities for intraseasonal to interannual 
(ISI) timescales has been made by focusing on the variables and processes that act as sources of 
predictability for the climate system.  The assessment also describes the building blocks of ISI 
forecast systems, how forecasts are verified and disseminated, and the relationships among the 
building blocks, forecasting procedures, and improvements in ISI forecast quality.  The 
committee focuses on qualitative estimates of potential improvements in ISI prediction systems, 
since a quantitative upper bound of predictability for the climate system cannot be made at this 
time (see Chapter 1).   

In this chapter, the committee’s recommendations are presented.  Following the 
recommendations, the committee presents its thoughts regarding the expanded use of 
observations, the prospects for seamless forecasting, and the magnitude and rate of expected 
forecast improvements. 

 
 

RECOMMENDATIONS 
 
The committee identified three general categories of actions to advance ISI predictions: 

Best Practices, Improvements to the Building Blocks of ISI Forecast Systems, and Research for 
Sources of Predictability. The Best Practices are largely focused on the activities of the 
operational forecast centers and aim to improve the delivery and dissemination of forecast 
information for both decision-makers and researchers. The Improvements to the Building Blocks 
of ISI Forecast Systems pertain to both the operational and research communities and focus on 
the continued development of observations, statistical and dynamical models, and data 
assimilations systems.  Research for Sources of Predictability is aimed primarily toward the 
research community. 

These three categories indicate the relative time horizons associated with the 
recommendations.  Many of the Best Practices could be adopted relatively quickly.  Although 
some of the suggestions for archiving forecasts and convening meetings may require increased 
resources and planning, most of the recommendations involve modifications to the routine 
activities of operational centers rather than new initiatives or programs.  Improvements to the 
Building Blocks of ISI Forecast Systems will likely require more time and effort to pursue and 
will necessitate significant collaboration between operational forecasters and research scientists.  
Incorporating and validating some of these changes would likely occur over several years.  The 
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Research for Sources of Predictability provides a set of longer-term research goals.  Although 
many experiments can be designed and run now, results may take several years to emerge, given 
the pace of scientific publication and discourse.  Once some of this research has been completed, 
translation of the results into an operational setting will require subsequent efforts by both 
operational centers and research scientists.  Thus, the research goals constitute a longer-term 
vision.   

 
 

Best Practices 
 

Lack of access to forecast and verification information and issues with communication 
between research and operational forecasting communities are major barriers to the improvement 
of ISI forecast systems.  The committee recommends several steps to foster expanded 
collaboration, create an archive of key ISI forecast data, set standards for verification techniques, 
and minimize subjective components of ISI forecast. 
 
(1) The synergy between operational ISI forecasting centers and the research community 
should be enhanced. 

A number of important activities would contribute greatly to the goal of accelerated 
synergy and progress.  The committee recommends the following. 

 
• Targeted workshops focused on specific areas relevant to model and forecast 

improvement should be held at least annually at the operational centers.  The workshops 
should produce actionable recommendations that result in specific plans for developing 
and testing new ideas for operational forecasting. 

• Scientists in the operational centers should participate actively in scientific meetings, 
especially in the areas of modeling and use of observations.  

• Short term positions in operational centers should be granted to academic researchers.  
These positions could focus on a particular scientific issue that is both in the researcher’s 
field of expertise and offers opportunities for improving operational forecast quality.  

• New data sets from both the academic researchers and scientists in operational centers 
should be made available to the scrutiny of the broader academic community at an early 
stage to help identify early strengths and weaknesses. 

• The development of new observations to support ISI forecasting should be carried out 
with the engagement of the operational centers through an ongoing dialog about the 
efficacy of the observing system and the need for further observational campaigns by the 
research community.  

 
(2) Operational ISI forecasting centers should establish public archives of all data used in 
forecasts, including observations, model code, hindcasts, analyses, forecasts, re-analyses, 
re-forecasts, verifications, and official forecast outlooks. 

Archives of forecast information are needed by national and international operational 
centers, researchers, and the private sector in their efforts to quantify and identify sources of 
forecast error, provide the baseline for forecast assessment and model fidelity, develop metrics 
and diagnostics for model assessment, calibrate model forecasts, quantify and document model 
and forecast improvement, such as those that results from changing resolution or 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

Recommendations and Remarks on Implementation  131 

parameterizations, and develop tailored forecast products for decision systems and climate risk 
management.  

Archives serve as an important mechanism for bridging the gap between operational 
centers and forecast users, whether they are involved in making climate-related management 
decisions or conducting societally relevant research.  Since it is not possible for operational 
centers to foresee or address all possible needs of these users, archives of forecast information 
will permit users to access the information that is most important to them and, in some cases, 
develop their own derivative products.  Feedback from forecast users can also offer pathways to 
improving ISI forecast quality.  
 
(3) Operational ISI forecasting centers should broaden and make available the collection of 
metrics used to assess forecast quality. 

No perfect metric exists that conveys all the information about a forecast.  Quantitative 
skill assessment of forecast quality should be determined and made available through multiple 
metrics and graphical techniques, including ones that assess the quality of the probabilistic 
information and multi-model ensembles. Some of these metrics should include information on 
the distribution of skill in space and time. 
 
(4) The subjective components of operational ISI forecasts should be minimized.  

Recent research suggests that the subjective component of many present-day forecasts 
can reduce forecast quality (e.g., O’Lenic et al. 2008).  The subjective component generally 
comes from qualitative discussion and interpretation by forecasters regarding the state of the 
climate system and forecasting tools. The subjective component also limits reproducibility, 
restricting retrospective comparison of forecast systems.  
 

Model “modularization” was an aspect of Best Practices that was considered by the 
committee but not recommended.  Frameworks for modularizing climate modeling codes have 
been suggested as a way to provide the software infrastructure to enhance collaboration, 
research, and ultimately the transition of research into operational activities. One such example is 
the Earth System Modeling Framework18 (ESMF).  In principle, activities such as ESMF have 
universal appeal; however, in practice they are more complicated than anticipated and their 
adaptation is often uneven. These efforts should be encouraged in the long view, but their utility 
in facilitating the transition of research to operations, making operational models more accessible 
to researchers or enhancing seasonal forecast quality has yet to be demonstrated. 
 

 
Improvements to the Building Blocks of Forecast Systems 

  
ISI forecast quality will improve with better building blocks.  New observations and new 

uses of existing observations can provide better initializations of various components of the 
climate system (atmosphere, ocean, land, and ice) and information regarding poorly understood 
processes that operate within and among components of the climate system.  New uses of 
                                                 18 The basic idea behind ESMF is that complicated applications should be broken up into smaller pieces, 
or components. A component may be a physical domain, or a function such as a coupler or I/O system. 
ESMF also includes toolkits for building components and applications, such as regridding software, 
calendar management, logging and error handling, and parallel communications 
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statistical methods, especially nonlinear techniques, can serve as useful forecast models.  They 
can also be used to diagnose problems in dynamical models or to identify and characterize novel 
sources of variability.  Dynamical models can be improved since they exhibit several well-
known biases.  More advanced data assimilation methods can be used in operational settings, and 
more observations can be assimilated into forecasts. 
 
(5) Statistical techniques, especially nonlinear methods, should be pursued in order to 
better characterize processes that contribute to ISI forecasts.  

Comparisons between statistical models and dynamical models provide information on 
the deficiencies within dynamical models. Historically, linear statistical analyses of observational 
data have provided an awareness of important spatial patterns and teleconnections. Recent 
research (e.g., Lima et al., 2009) demonstrates that nonlinear methods can yield statistically 
significant increases in prediction skill on ISI time scales when compared to traditional linear 
techniques.  However, these techniques have not been incorporated operationally.  The 
committee finds that there is a value in expanding such analyses to nonlinear counterparts.  
 
(6) Systematic errors in dynamical models should be identified. 

Current state-of-the-art ISI prediction models have relatively large biases that reduce 
prediction quality. Some classic examples include: (1) the so-called double ITCZ problem, (2) 
the excessively strong equatorial cold tongue, (3) weak or incoherent intraseasonal variability, 
(4) failure to represent the multi-scale organization of tropical convection, and (5) poorly 
represented cloud processes, particularly low level stratus. These errors have both regional and 
global impacts and could be indicative of errors in the model formulations that are limiting 
predictability.  

Sustained observations are needed to quantify model systematic errors. Examples of 
sustained observations include those related to describing the properties of or fluxes among the 
atmosphere, ocean, and land surface (e.g., boundary layer humidity, exchange of heat between 
the atmosphere and ocean).   
 
(7) To reduce errors produced by dynamical models, the representation of physical 
processes should be improved. 

Systematic errors in dynamical models should be reduced by expanding the 
understanding of underlying physical processes, with the goal of transferring improvements into 
operational ISI forecasts.  This includes systematic errors in the mean and the variability and 
their interaction. Process studies that are closely tied to operational ISI model improvement 
should be carried out on specific components of the climate system (e.g., sea ice, aerosols, snow 
cover), specific processes and variability (e.g., triggering the onset of an MJO), and the 
interactions among components of the climate system (e.g., air-land coupling strength, 
stratosphere-troposphere interactions).  

The research community should be engaged in the conduct of process studies that address 
the physical processes governing ISI variability.  Specific physical phenomena are poorly 
represented in most ISI prediction systems (e.g. the MJO).  A strategy to expand knowledge for 
use in model development is exemplified by the CLIVAR climate process teams (CPTs).  The 
CPTs focus modelers and process scientists on poorly represented or unrepresented physical 
process in models.  Similarly, the WCRP-WWRP/THORPEX’s Year of Tropical Convection 
(YOTC) is another approach that focuses community effort via a virtual Intensive Observation 
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Period (IOP), combining already existing observational resources with incremental 
programmatic efforts to target model improvements of a few specific phenomena (e.g., MJO, 
easterly waves, tropical cyclones).   

Process studies and phenomenological focus aside, enough cannot be said for seeking 
brute force improvements in computing capabilities for better resolving subgrid scale processes 
and removing as much reliance on parameterization as possible.  This could be in the context of 
limited domain models (e.g., cloud-resolving models) used to develop and evaluate subgrid scale 
parameterizations as well as cloud or cloud-system resolving/permitting global models.  In 
addition, the impact of increasing the resolution of ISI models should be further investigated19.  

 
(8) Statistical and dynamical models should continue to be used in a complementary 
fashion by operational ISI forecasting centers. 

Using multiple prediction tools leads to improved and more complete ISI forecasts.  
Forecasting centers should continue to use statistical and dynamical models in a complementary 
fashion.  Examples of statistical techniques include stochastic physics, interactive ensembles, 
empirical corrections or empirically-based parameterizations and process models.  

The use of statistical and dynamical downscaling methods is another application that 
should be explored to address the information mismatch between the coarse spatial resolution of 
operational climate forecasts and the fine resolution needs of some end users. 
 
(9) Multi-model ensemble (MME) forecast strategies should be pursued, but standards and 
metrics for model selection should be developed. 

Multi-model ensembles (MME) have been shown to outperform individual models for 
forecasting.  The committee encourages continued exploration of MME experiments.  
Understanding why the statistics associated with them consistently outperform the predictions 
from individual models should be a goal for researchers and operational centers.  Current multi-
model techniques generally include models based simply on what is available; continued work is 
necessary to develop techniques of optimally selecting and weighting ensemble members.  
Experimentation with MME should not compete with model improvement, but rather, should 
contribute to the process of identifying areas for model improvement.   
 
(10) To enable assimilation of all available observations of the coupled climate system, 
operational centers should implement state-of-the-art 4-D Var, Ensemble Kalman Filters, 
or hybrids of these in their data assimilation systems. 

Assimilation methods currently being used are often obsolete, and many observations are 
not being assimilated as part of the forecast cycle.  To enable assimilation of all available 
observations of the coupled climate system, operational centers should implement state-of-the-art 
4-D Var, Ensemble Kalman Filters, or hybrids of these in their data assimilation systems. 
Priority should be given to expanding operational data assimilation to ocean observations, such 
as sea surface heights. 

                                                 
19 The biggest advantage of the high resolution models lies in better resolving extreme events (tropical 
cyclones, heavy rainfall, instability waves etc.) and perhaps their feedback to large scale slow dynamics. 
On the other hand, it has also been shown that the coupled models’ biases in representing mean 
precipitation and SST (e.g., Pacific cold tongue and double ITCZ) remain when the model resolutions 
increase. There is a need to continue evaluating the positive impacts of the resolution and comparing with 
other competing strategies in improving model prediction, such as MME. 
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Research for Sources of Predictability 

 
(11) Many sources of predictability remain to be fully exploited by ISI forecast systems.  To 
better understand key processes that are likely to contribute to improved ISI predictions, 
the committee recommends that the scientific community pursue the following six areas as 
research goals. 
 

To identify research priorities, the committee applied four criteria to the list of sources of 
predictability listed in Chapter 2.  Sources that merited further research were selected based on:   

 
1) Physical principles indicate that the source has an impact on ISI variability and 

predictability. 
2) Empirical or modeling evidence exists to support the case made based on physical 

principles in (1).  
3) The committee could identify gaps in knowledge that have prevented these sources 

from being exploited by ISI forecast systems.   
4) There is potential social value for gaining knowledge of this source of variability.  

For example, the MJO has significant societal impact in its effect on the Indian 
monsoon, which determines water supply and agricultural productivity for billions of 
people. 

 
The following six areas met these criteria, but are not presented with any further prioritization. 
   
MJO 

A concerted effort on improving the prediction quality associated with the MJO should 
be undertaken and coordinated with research activities. The path forward on this should include 
focused process studies, model improvement, and close collaboration between research and 
operational communities (e.g., Year of Tropical Convection (YOTC) project, the MJO Task 
Force).  It will be necessary to develop and implement standardized diagnostics and metrics to 
gauge model improvements and track improvements in forecast quality.  MJO influences on 
other important components of the climate system (e.g,. ENSO, monsoon onsets and breaks, 
tropical cyclone genesis, etc.) should continue to be explored and exploited for additional 
predictability. 
 
Stratosphere-Troposphere Interactions 

Operational ISI prediction models should be improved to represent stratosphere-
troposphere interactions.  Relatively long-lived (up to two months) atmospheric anomalies can 
arise from stratospheric disturbances.  In sensitive areas such as Europe in winter, experiments 
suggest that the influence of stratospheric variability on land surface temperatures can exceed the 
local effect of sea surface temperature. Additionally, while our weather and climate models do 
not often resolve or represent the stratospheric Quasi-Biennial Oscillation very well, it is one of 
the more predictable features in the atmosphere, and it has been found to exhibit a signature in 
ISI surface climate.   
 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

Recommendations and Remarks on Implementation  135 

Ocean-atmosphere coupling 
 Due to the very large heat capacity of sea water, anomalous sea surface temperatures and 
upper ocean heat content can have significant impacts on the atmosphere above.  The impacts of 
the anomalies associated with ENSO are well known.  However, further research is needed to 
examine the role of extratropical atmosphere-ocean coupling, to investigate the need to represent 
ocean-atmosphere coupling more realistically over a wide range of spatial scales (including 
down to the scales of the sharp SST gradients associated with fronts), and to better observe and 
represent air-sea fluxes more realistically in models.  
 
Land-atmosphere feedbacks 

Research should be directed at maximizing prediction quality associated with land-
atmosphere feedbacks. Recent research shows that the realistic initialization of soil moisture in 
dynamical models can increase the accuracy of precipitation and (especially) temperature 
predictions at intraseasonal timescales.  The realistic initialization of snow amount may also 
yield better quality predictions, though this connection is relatively unexplored.  To maximize 
the impact of land feedbacks on prediction quality, the mechanisms underlying the land-
atmosphere coupling (e.g., evaporation, boundary layer dynamics, convection) need to be better 
understood and better represented in forecast systems. 
 
High impact events affecting atmospheric composition 

Operational centers should be prepared to make ISI forecasts following unusual but high 
impact events such as volcanic eruptions, limited nuclear exchange, or space impacts that can 
cause a sudden, drastic change to the atmospheric burden of aerosols and trace gases.  Research 
efforts should study the consequences of such high impact events on the climate system over ISI 
timescales and provide guidance for improving forecast systems. 
 
Non-stationarity  

Trends can be an important source of predictability that should be exploited since 
accurate trends in atmospheric compositions (e.g. greenhouse gases, aerosols) and land cover can 
influence ISI variability and forecasts.  Current statistical techniques (such as Optimal Climate 
Normals) and dynamical models do not adequately deal with this non-stationarity.   

Improved statistical techniques should be developed for exploiting the predictability 
associated with such non-stationary behavior (e.g., Livezey et al., 2007). The use of dynamical 
models that include a more comprehensive treatment of radiative processes, such as aerosol 
effects, and also incorporate trends in land use could help improve the quality of dynamical ISI 
forecasts on longer timescales.  As statistical and dynamical models evolve, it will be important 
to evaluate how much improvement in forecast quality is derived from the trend and how much 
is derived from model improvements. 

 
 

REMARKS ON IMPLEMENTATION 
 
The committee also discussed three issues related to the adoption and implementation of 

the recommendations: the more effective use of many existing observations through 
improvements to ISI forecast systems, especially as some research-oriented observations 
transition to operational observations; the role of ISI forecasting as it relates to seamless 
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forecasting across a wide range of space scales and timescales; and, realistic expectations for the 
types and rate of improvement in ISI forecast quality.   

 
 

More Effective Use of Observations 
 

Observations are an essential building block of ISI forecast systems.  Observations are 
required to provide initial values for ISI forecasts, to investigate particular processes and develop 
parameterizations for use in dynamical models, and to validate and verify models. There are 
many available observations that are not currently being utilized in data assimilation schemes 
that could contribute to the initialization of dynamical models.  Thus, improving ISI forecasting 
systems offers opportunities to both collect new observations and utilize existing observations in 
new ways, which can influence decisions regarding the maintenance and upkeep of observational 
networks.   

In recognition of the need to better understand and predict climate change and variability, 
the number and types of in situ and remotely-sensed observations have grown in the last decade 
under different national and international programs (e.g., the NOAA Climate Program Office, 
http://www.climate.noaa.gov/index.jsp?pg=./cp_oa/description.html, NASA’s Earth Observing 
System (EOS), http://eospso.gsfc.nasa.gov/, and the U.S. and intergovernmental Global Climate 
Observing System (GCOS) draft plan, http://ioc-goos.org/gcos-ip10draft). It is a challenge to 
make effective use of these observations, both in operations as well as research.  It is also a 
challenge to identify observations initiated under research programs that have merit to be 
continued on an ongoing basis, potentially past the lifetime of the research programs themselves.  
For operations, one of the more notable challenges is to make use of as much data as possible in 
the data assimilation process, and subsequently determine the impact of these observations on 
forecast quality.  This will be facilitated by the use of more advanced methods for data 
assimilation in ISI forecast systems, such as Ensemble Kalman Filter techniques, that are able to 
adapt the forecast error covariance to the presence of new types of observations.  Efforts to 
improve ISI prediction should work synergistically with efforts to develop and sustain the 
observing system. 

In situ data has value in a number of ways.  Increasing our knowledge of processes that 
affect climate on ISI timescales will require observations targeted on phenomena that are 
currently either not sampled or not sampled at the appropriate resolution.  The concentrated 
process studies done in climate research programs, in particular the CLIVAR Climate Process 
Teams or CPTs, are a means to develop both better understanding of processes that may yield ISI 
predictability and to improve the representation of key processes not explicitly resolved in 
dynamic models.  Long time series, though sparse (especially in the ocean), yield records that 
can be used to identify biases in dynamic models and to improve the realism of the models’ 
representation of key physical processes.  Observations of coupling between the components of 
the Earth system, in particular, guide the development of more realistic coupled models.  
Networks of in situ observations, such as radiosondes or drifting buoys, provide data for model 
initialization.  In every case, it is necessary to provide metadata (including estimates of 
observational uncertainty) with observations and to facilitate the timely access to the 
observations by the modeling community.  It remains an ongoing task to facilitate dialog 
between the observers and the modelers as well as to build and maintain accessible databases.  
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There are many new satellite products that have become available in the last decade (e.g., 
EOS A-Train) that include much more detailed information on clouds and aerosols (e.g., 
CloudSat, CALIPSO, MISR), atmospheric composition (e.g., TES, MLS), ice and snow, and soil 
moisture (e.g., AMSR, MODIS, GRACE).  Considerations have to be made regarding the use 
that can be made of these now—despite their primary role as research satellites—as well as 
which elements of their respective data streams should become operational in the future. For 
example, despite the research-oriented nature of the Microwave Limb Sounder (MLS) on the 
EOS Aura platform, ECMWF assimilates radiances from MLS to provide more information 
about the upper troposphere and lower stratosphere.  Operational forecast systems should be 
nimble enough to take advantage of these types of observations.   

In particular, information on clouds has yet to be widely used.  With the exception of 
cloud-tracked winds, the bulk of the satellite data employed is often associated with clear skies.  
However, cloudy conditions often indicate areas of small-scale gradients and inhomogeneities, 
i.e., locations where more coarse-scale observations are unrepresentative.  The variety of 
available, high-resolution satellite data sets can provide a wealth of information for cloudy areas.  
This example with cloud data can be generalized to other data sets that have been developed 
primarily for research purposes but for which technical observing challenges or challenges in 
assimilating and incorporating such observations into prediction tools might still remain (e.g., 
precipitation, integrated surface water/ice mass). 

Some of the new data sets can also be used to develop advanced diagnostics and metrics, 
as discussed above, for assessing model performance and guiding model improvement. Strong 
support should be given to activities that utilize these resources for model improvement, and 
interaction of the observing efforts with the pertinent forecast modelers should always be 
considered. 

Conversely, some of the suggested improvements to forecast systems may provide 
guidance for future measurement campaigns.  For example, research regarding expanded data 
assimilation methods could indicate the types and/or spatial and temporal resolution of data sets 
that could be the target of future measurement missions.   

 
 

Seamless Forecasting 
 

ISI prediction is the temporal and spatial bridge between numerical weather prediction 
and climate prediction and, as such, a key component of a seamless prediction system. It is worth 
highlighting that a seamless forecasting system is not necessarily one that uses the exact same 
model at all timescales (which, if only for computational reasons, is hardly practical) but a 
system that, by using the same modeling framework, allows us to understand and trace model 
biases and errors across timescales.  Of concern, for example, are biases seen in ISI forecasting 
and how they may impact predictions at longer climate time scales that cannot be verified. As 
part of this concept, ISI prediction is a perfect platform for model development for all timescales 
(from the short-range to long-term climate) for the following reasons:  

 
• ISI prediction deals with an intrinsically coupled, multi-scale problem. Therefore, 

coupled models need to be used for ISI prediction, requiring us to properly understand 
and represent air-sea-land-ice exchanges and coupled variability.  
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• ISI prediction deals with natural variability and long-term trends. Therefore it requires 
initialization of the current state of the earth system (atmosphere/land-surface/sea 
ice/ocean) and the long-term forcings (such as greenhouse gases or aerosols). 

• ISI predictions can be verified (as opposed to long-term climate projections), providing a 
robust mechanism for model validation and improvement: “Fast” physical processes 
(e.g., convection), low-frequency phenomena (e.g. MJO), and global teleconnections can 
all be verified against real-time observations. 

 
In order to move closer to seamless prediction and leverage improvements in ISI prediction, 

transparency among forecast systems is paramount.  Through the adoption of Best Practices, 
efforts to improve ISI predictions can be related back to model development and process 
knowledge.  

 
 

Realistic Expectations for Forecast Improvement 
 

Figure 6.1 displays the evolution of forecast skill for the ECMWF atmospheric prediction 
system from 1980 through 2009. During this period, there have been huge improvements in the 
forecast model, the observing system, and the data assimilation system. Many of the changes 
have been revolutionary, for instance the switch to 4D-Variational data assimilation, the 
availability of observations of the southern hemisphere via satellite measurements, and the direct 
assimilation of satellite radiances. However, in general the long-term trend in forecast quality 
progress is slow but monotonic. 

It would not be possible to cleanly reproduce Figure 6.1 for ISI forecasts because of the 
disparity in sample sizes and the greater importance of episodic events such as ENSO on forecast 
accuracy. If we were to scale time to be forecast samples rather than years, then the progress 
over the past 25 years has been rapid and dramatic for ISI forecasts. As recently as 1985, 
although the prediction community was aware that El Niño was important, the objective 
incorporation of factors perceived as influential on seasonal climate, such as SSTs and soil 
moisture, were still in the research realm (Gilman, 1985). It was not until the mid-1990s that the 
National Weather Service’s Climate Prediction Center complemented their subjective forecasts 
based on statistical prediction guidance with objective methods that also considered dynamical 
ocean-atmosphere models (O’Lenic et al. 2008). The impact of these improvements on forecast 
quality has not been quantified, however. One approach to doing so is to compare the quality of 
forecast systems over a common multi-decade period. Unfortunately, very few such studies exist, 
and those that do often focus on ENSO. These few studies do show that modest improvements 
have been seen in the forecasts due to improvements in the observational network (Stockdale et 
al., 2010; Figure 6.2), improved prediction tools (Saha et al., 2006; Figure 4.2), and the 
combined effects of improvements in the dynamical model and in the assimilated system that 
provides the ocean initial conditions (Balmaseda et al. 2009; Figure 6.3). These improvements 
may be synergistic—Stockdale et al. (2010) point out that the season for which the initial 
conditions from the completed TAO array has the greatest impact is the season when the model 
has the smallest errors. Similarly Balmaseda et al. (2009) show that the regions that are least  
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FIGURE 6.1.  Evolution of ECMWF forecast skill for varying lead times (3 days in blue; 5 days 
in red; 7 days in green; 10 days in yellow) as measured by 500-hPa height anomaly correlation.  
Top line corresponds to the Northern Hemisphere; bottom line corresponds to the Southern 
Hemisphere.  Large improvements have been made, including a reduction in the gap in accuracy 
between the hemispheres.  Identical to Figure 2.1.  SOURCE: courtesy of ECMWF, adapted 
from Simmons and Hollingsworth (2002). 

 
 

improved by enhancements of the observing network are those where the models have serious 
biases in the representation of the mean climate.  

The earlier sections of this report support the conclusion that ISI forecast quality should 
continue to slowly improve on average in the future. For example, as operational centers move to 
more objective methods in translating prediction inputs into issued forecasts (O’Lenic et al. 
2008), modest improvements in forecast quality can be expected.  The components of the climate 
system are currently better observed than the tropical Pacific was before the 1980s. It is unlikely, 
though not impossible, that there are processes with impacts as large as ENSO and the MJO that 
have not been detected by current observing systems.  Similarly, it is unlikely though not 
inconceivable that available models are failing to simulate some important process that could 
lead to a revolutionary advance in the quality of ISI predictions.  It is more likely that forecasts 
will improve incrementally with an improved representation or consideration of the sources of 
predictability (like the MJO or land surface processes); a concerted effort in building better 
models and better assimilation systems; and, the deployment and use of more observations. 

The curves in Figure 6.1 mask one aspect of short-term weather forecasts because they 
have been monthly-averaged and time-smoothed. There is considerable day-to-day variability in 
the accuracy of predictions, some of it associated with particular phenomena in the atmosphere. 
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FIGURE 6.2  Time series of Mean Absolute Error (MAE) (thicker line with symbols) for the 
first three months of NINO3.4 predictions starting 1st February each year. Also shown (thin line, 
no symbols) is what is referred to as the Best Absolute Error (BAE), which is defined at each 
lead time as either zero (if the observations lie within the predicted range) or the distance 
between the observed value and the closest ensemble member, and then averaged over lead 
times. For a perfect forecasting system with a modest ensemble size, the BAE would be mostly 
zero, with occasional small positive values. The step change in skill after 1993 is evident.  
SOURCE: Stockdale et al. (2010), Fig 7a.   
 
 
In addition, the value of forecasts to users may be far greater in some instances. For instance, the 
economic value of an accurate 72-hour prediction of hurricane landfall may be far greater than a 
forecast of fair weather cumulus for the same location. Short-range weather prediction takes 
advantage of this by committing increased resources to creating and disseminating forecasts of 
high impact events like hurricanes.  

ISI forecasts also exhibit conditional accuracy; for example, forecast quality improves 
significantly during ENSO events. Forecasts may also be more valuable in certain instances. 
Given higher predictability and the opportunities as well as catastrophes within the United States 
associated with ENSO events, a well predicted ENSO event and a reliable forecast of its 
teleconnections may lead to a very positive net economic impact through reduced disaster losses 
and increased profits for some sectors (Chagnon, 1999; Goddard and Dilley, 2005). Similarly, 
MJO events can be intermittent yet have influence over tropical cyclone activity; and thus an 
accurate MJO forecast can yield valuable foresight into the extremes associated with enhanced or 
suppressed hurricane activity.  More unusual events that impact conditions on intraseasonal and 
interannual time scales may have even greater economic impact. Unusual events like a major 
volcanic eruption, the impact of a large body from space, or a nuclear exchange may lead to 
larger deviations from recent climatology than even the largest ENSO.  Producers of ISI 
predictions could and should be prepared to make short term climate forecasts for such situations 
(i.e., radical changes in atmospheric composition).  Models and forecast generation procedures 
should be prepared to deal with such events before they happen. Good forecasts of the seasonal  
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Figure 6.3  Progress in the seasonal forecast skill of the ECMWF operational system during the 
last decade. The solid bar shows the relative reduction in mean absolute error of forecast of SST 
in the Eastern Pacific (NINO3). The brown-striped bar shows the contribution from the ocean 
initialization, and the white-striped bar is the contribution from model improvement. SOURCE: 
Balmaseda et al. 2009. 

 
 

response to such unusual events could have far more impact than any forecasts of the 
undisrupted climate system.  

 
 

CLOSING REMARKS 
 
 The committee’s recommendations constitute a strategy to improve the quality of climate 
predictions at ISI timescales by expanding access to forecasting data and tools; broadening the 
suite of verification metrics that are used; enhancing collaboration among the operational, 
research, and user communities; upgrading the building blocks of the ISI forecast systems, which 
include observations, statistical and dynamical models, and data assimilation techniques; and 
pursuing research on incompletely understood processes that can contribute to predictability.  
This strategy is based largely on the lessons learned from historical improvements in the quality 
of weather and ISI forecasts.    
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The recommendations have also been crafted to draw on the respective strengths of 
operational forecast centers and research scientists in the broader community.  Considerable 
expertise in producing and disseminating forecasts exists at the operational centers.  Therefore, 
Best Practices have been designed with their protocols in mind and they will play an integral role 
upgrading the building blocks of ISI forecast systems.  In contrast, the research community is 
more focused on experimenting with novel ideas, approaches, and techniques.  Their role 
involves expanding our understanding of ISI processes and the tools that are used to measure and 
simulate these processes.  Communication and interaction between these groups will be critical 
to the improvement of ISI forecast systems. 

Finally, the committee stresses that improvements to ISI forecasting systems and 
improvements in the use of ISI forecasts are possible.  In particular, adoption of Best Practices 
offers a near-term way to aid forecast users and researchers by enhancing access and 
transparency to forecast information.  Incorporating these practices will facilitate more frequent 
and valuable interaction among these groups.  Over the coming years and decades, there are 
ample opportunities to improve the building blocks of ISI forecast systems and expand our 
ability to exploit the sources of variability.  Although improvements are unlikely to be 
revolutionary, a coordinated effort by operational centers and the broader research community is 
likely to yield positive results over time. 
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Appendix A 
Background Information  
on Statistical Techniques 

 
 
 Throughout this report, various statistical techniques are mentioned.  In some cases, these 
techniques are used in model validation efforts, as a way of measuring the performance of 
predictions or forecasts.  Many of the forecast “metrics” involve some sort of statistical 
algorithm.  If a forecast system is deemed to be of low quality, the statistical techniques may 
provide a first step in identifying opportunities for improvements to the forecast models.  
Alternatively, if bias is detected in the predictions or forecast, statistical techniques can also be 
used to devise methods of bias-correction.  In other cases, statistical techniques have been used 
to identify and characterize “patterns of variability” within the climate system, and serve as the 
foundation for a forecast system. 
 The following sections provide some background material on several statistical 
techniques that are frequently mentioned in the report.  First, a table listing 11 commonly used 
statistical techniques is provided, listing some of the advantages and disadvantages in their 
application to model validation efforts and forecasting.  Then, five specific sets of techniques 
(correlation, multiple regression, composites, eigentechniques, and kernel methods) are 
discussed in more detail.  
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Table A.1.  Commonly used statistical techniques and their advantages and disadvantages. 
Technique Advantages Disadvantages 
Pearson’s 
Correlation 

Well understood.  Intuitive 
scale. 

Linear, sensitive to outliers, not designed to find 
causal relationships. 

Spearman’s 
Correlation 

Well understood.  Intuitive 
scale. Resistant to outliers. 

Linear in the ranks.  

EOF/PCA Well understood.  Efficient 
compression of large datasets. 

Linear. Sensitive to sampling errors.  In most 
applications, requires the estimation of the 
dimensionality of the signal.  If modes identification 
is desired, may require post processing with 
additional linear transformation. 

Nonlinear 
(Complex) 
EOF/PCA 

Can result in very efficient 
compression of data. 

Sensitive to sampling errors.  In most applications, 
requires the estimation of the dimensionality of the 
signal. 

CCA/SVD Well understood and applied 
often. 

Linear.  No guarantee that the cross-correlation or 
covariances are larger than the correlations within 
each variable.  Often pre-processed by extracting 
EOFs to avoid this problem.  May need post-
processing with linear transformations if more than 
one field is desired. 

Cluster 
Analysis 

Divides data into groups 
based on distance.   

Numerous cluster methods available that give 
different results when applied to a single data set 
using the same distance measure.  Since it is an 
exploratory tool, does not contain rules for assigning 
membership to independent observations. 

Compositing Since it involves only 
averaging, it is well 
understood. 

Unless careful pre-screening of data has been 
performed, it is possible that multiple modes may be 
averaged and unrepresentative results can emerge. 

Discriminant 
Analysis 

Well suited to separation of a 
finite number of categories if 
linear separability is present.  
Numerous variations exist to 
allow or outliers and unequal 
variance in the groups.  Rules 
learned to classify can be 
applied to independent data. 

Linear separability is not often present in large scale 
problems. Variable selection may be 
computationally intensive.  

Regression Well understood in basic 
form.  Many variations exist 
for correlated predictors, 
nonlinear relationships, and 
when outliers are present. 

Traditional multiple linear regression makes 
numerous assumptions that are rarely met in climate 
analyses. 

Neural 
networks 

Allow for fitting nonlinear 
relationships 

Can be complicated to fit properly.  Can be 
computationally intensive for large datasets.  Does 
not give good guidance on the physics of a problem 
as there are no constant weights. 

Kernel 
methods 

Allow for fitting nonlinear 
relationships. 

Must test for an appropriate kernel to fit.  Can be 
computationally intensive for large datasets.  Unless 
a linear programming approach is used, does not 
give good guidance on the physics of a problem as 
there are no constant weights. 
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1) Correlation Patterns  

The majority of analyses that seek to establish models’ teleconnections of atmospheric 
variability are covariance or correlation-based.  Both of these statistics measure the linear 
relationship between a set of variables.  The covariance is the cross-product of the anomalies 
from the mean.  Owing to this definition, covariance is used to assess eddy transports in models, 
since the mean is used to represent climatology.  This definition underscores an implicit 
assumption of stationarity of the mean, which is rarely present in the atmosphere.  The Pearson’s 
correlation coefficient, commonly just referred to as the correlation coefficient, is a scaled 
version of the covariance, where the covariance is divided by the standard deviation of the fields.  
This provides a convenient range.  Both these coefficients measure the property of two (or more) 
fields co-varying.  It is also related to the mean squared error between two fields as the variance 
of one field multiplied by the correlation between the two fields times the anomaly of the second 
field.  This gives rises to its popularity in the form of the “anomaly correlation”.  However, such 
a relationship assumes both fields are bivariate normally distributed, which is rarely the case, and 
that there is a linear mapping between the fields, as both correlation and covariance measure the 
linear portion of the relationship between fields.  Relationships that are nonlinear cannot be 
measured by these metrics, nor does a value of zero indicate statistical independence, despite 
such a statement in numerous research papers.  As a rule, investigators need to insure that the 
distributions of the variables are valid and the relationships linear before making inferences from 
the correlation.   
 Nonlinear functional relationships that are linear in the ranks can be measured by 
Spearman’s correlation (Grantz et al., 2007).  The distribution of the ranks should be 
approximately normally distributed.  In both types of correlation coefficients, inference will 
require the use of the sample size.  Any serial correlation will need to be accounted for by a 
degree of freedom calculation or a sampling strategy to remove serial correlation.   
 
2) Multiple Regression 

A prediction model using multiple regression gives a mean of y (predictand) conditioned 
upon a linear combination of the various x’s (predictors).  The model is linear in the parameters, 
although any parameter can be a nonlinear function of other variables.  Interpretation of the 
model is similar to the simple regression model, except the variance accounted for by each 
predictor is examined as well as a multiple R2 statistic.  The statistical significance of each model 
parameter can be tested with an F-test (a multivariate extension of a t-test).  An additional model 
assumption is that each predictor is independent of the others.  This assumption is rarely met in 
practice.  Mild deviations from independence seem to have little effect on the model, whereas 
moderate to large correlations between predictors can lead to model instability.  This can be 
assessed through use of a condition number statistic.  If necessary, alternative models, such as 
ridge regression (Peña and van den Dool, 2008) or principal component regression (Tippett et al., 
2008) have been shown to hold promise in additional skill and stability when applied to highly 
correlated predictors, although the tradeoff for the former technique is that the unbiased property 
of least squares is abandoned through the addition of constraints and for the latter technique, 
interpretation of the predictors is often difficult.  Implicit in the discussion of multiple regression 
is model selection to obtain the m predictors.  The principle of a compact model is important and 
there may be many more potential predictors than m.  Stepwise regression is often used to reject 
additional predictors (Ohring, 1972; Mercer et al., 2008). 



Copyright © National Academy of Sciences. All rights reserved.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 

Appendix A  173 

 
3) Eigentechniques (EOF, PCA, SVD, CCA) 

The use of eigentechniques was pioneered by Pearson in 1902 and formalized by 
Hotelling (1933) in a series of papers.  In meteorology, the technique was named Empirical 
Orthogonal Functions (EOFs) by Lorenz (1956) who applied it to decompose a pressure data set.  
EOFs are unit length eigenvectors. The technique begins, implicitly or explicitly, with a 
correlation or covariance matrix that is decomposed into two new matrices, one of eigenvalues 
and one of eigenvectors.  The use of these two matrices has played a central role in decomposing 
flows in the atmosphere into “modes of decomposition”.  The key ideas behind eigentechniques 
are to take a high dimensional problem that has structure (often defined as a high degree of 
correlation) and establish a lower dimensional problem where a new set of variables (e.g., 
eigenvectors) can form a basis set to reconstruct a large amount of the variation in the original 
data set. The idea is to capture as much signal as possible and omit as much noise as possible.  
While that is not always possible, the low dimensional representation of a problem often leads to 
useful results.  Assuming that the correlation or covariance matrix is positive semidefinite in the 
real domain, the eigenvalue of that matrix can be ordered in descending value to establish the 
relative importance of the associated eigenvectors.  Sometimes the leading eigenvector is related 
to some important aspect of the flow or teleconnection (Ding and Wang, 2005).  In cases where 
the data lie in a complex domain, eigenvectors can be extracted in “complex EOFs”.  Such EOFs 
can give information on travelling waves, under certain circumstances, as can alternative EOF 
techniques that incorporate times lags to calculate the correlation matrix (Branstator, 1987).  An 
alternative scaling of the eigenvectors leads to the principal component analysis (PCA) model.  
Both techniques are often used to filter correlated sets of times series arranged on a grid or array 
of stations into modes of variation.  Such a decomposition requires the estimation of the number 
of modes that represent a geophysical signal.  The techniques developed to accomplish this tend 
to be ad hoc (LEV test, Craddock and Flood, 1969) or based on white noise properties of the 
eigenvalues (North et al., 1982; Overland and Preisendorfer, 1982).  Despite the widespread use 
of such tests, there has never been a formal linkage between the results of these tests and the true 
number of eigenvectors representing signal. Certain complications in such methods are the 
maximum variance property of the first eigenvector and the orthogonality of subsequent 
eigenvectors which tends to merge and smear known modes (Richman, 1986) as well as large 
sampling errors associated with those eigenvectors with closely spaced eigenvalues.  In some 
cases, post-processing with an additional linear transformation of a reduced set of eigenvectors 
can help to draw out the modes that agree with correlation-based teleconnections.  However, 
such analysis depends on correct determination of the number of signals in the data (Barnston 
and Livezey, 1987).   

Canonical correlation analysis (CCA) is an extension of EOF/PCA for cases where pairs 
of fields are interrelated with the idea of finding couplings between the fields.  The idea is to find 
a pair of patterns that maximize the correlation linear combinations of the eigenvectors of each 
field.  A variation of CCA, known in meteorological research as singular value decomposition 
(SVD) maximizes the covariace between fields.  Both techniques have been used routinely to 
generate medium range forecasts (Hwang et al, 2001; Shabbar and Barnston, 1996).  Since CCA 
is an extension of PCA, the challenges of PCA, such as identification of the proper 
dimensionality and the effects of maximal variance and orthogonality are present in CCA 
(Cherry, 1996; Cheng and Dunkerton, 1995).  Moreover, there is no guarantee that the desired 
cross correlation structure is large.  In such cases, the correlations within each field may 
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dominate.  To avoid this problem, CCA/SVD is often pre-processed with EOF to extract 
uncorrelated vectors.  This does solve the problem but makes interpretation that much more 
difficult. 

Discriminant analysis is used to divide data into a number of linearly separable groups 
with similar membership among the variables within each group.  Hence it is a discrimination 
and classification methodology.  The function that discriminates is essentially a linear 
combination of the variables that is an eigenfunction.  Skillful forecasts of temperature have been 
identified using this approach (DelSole and Shukla, 2006).  Variable selection is crucial for 
multiple discriminant analysis (Lehmiller et al., 1997). 

Another technique that is used often to find patterns of variability is cluster analysis.  
There are two broad families of clustering, hierarchical and non-hierarchical.  These techniques 
have been found useful to group members of forecast ensembles (Mo and Ghil, 1988; Tracton 
and Kalnay, 1993).  Gong and Richman (1995) present modes of rainfall variability for 
numerous cluster methods and distance measures to illustrate the differences between the 
techniques. 
 
4) Composites 

Modes of variability can be determined through composite analysis (averaging patterns 
with similar features). The technique is used often by synoptic meteorologists to determine 
dynamic fields of interest (Chen and Bosart, 1977). The idea of compositing has been extended 
to multivariate analyses for modes associated with the MJO (Weare, 2003).  Climatological 
applications of composites would benefit from lessons learned from synoptic meteorology: all 
members of the composite pool need to be checked for consistency prior to averaging.  This 
insures a unimodal distribution. 
 
5) Kernel Techniques 

Kernel techniques use a process that replaces an inner product with a kernel and then the 
solution is made in high dimensional “feature” space.  In comparing kernel techniques to 
traditional linear approaches, Lima et al. (2009) report that the kernel technique offers significant 
skill improvements over traditional linear methods. 

One example of the use of a kernel technique is shown in Figure A.1 where two classes 
exist (+, 0) and cannot be separated in two-space.  The kernel projects the data into three-space 
and a linear separation is possible.  Kernel techniques have a high potential for mode 
identification where linear low level modes provide ambiguous separability (e.g., the Arctic 
Oscillation versus the North Atlantic Oscillation).  The most challenging aspect of kernel 
methods is finding the appropriate kernel to fit.  Most often experiments using linear, polynomial 
and radial basis functions are fit and the method that generalizes best (highest skill on 
independent data) is selected. 
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FIGURE A.1  A kernel map, φ ,  converts a nonlinear problem into a linear problem in the 
feature space.  “+” belongs to positive class and “o” belongs to negative class. SOURCE:  
Richman and Adrianto (2010). 
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development and maintenance of the land surface model component of the GMAO’s Earth 
system model, a resource for the research community at large.  Dr. Koster is a fellow of the 
American Meteorological Society.  He has served on GEWEX and CLIVAR panels focused on 
land modeling and seasonal prediction.  He served for many years as a lecturer for the climate 
program at George Mason University, teaching a course on land-climate interactions.  He 
received his Sc.D from the Massachusetts Institute of Technology and his B.S. from California 
Institute of Technology. 
 
 
Michael B. Richman 
University of Oklahoma 
 
Dr. Michael B. Richman has a wide range of interests, including analysis of global climate 
models, examination of the climate dynamics associated with El Niño/Southern Oscillation 
(ENSO), interaction of planetary- and synoptic-scale features, analysis of climate variability on 
both the intra-seasonal and interannual time scales, application of data mining to different radar 
platforms and statistical methodology. His work has involved analysis of four-dimensional 
climate models on supercomputers, using high-performance and massively parallel algorithms. 
Additionally, his expertise in statistical meteorology has led to development of multivariate 
techniques that summarize very large data sets, identifying their modal patterns, as well as 
eigentechniques that search for theoretical patterns in observed and modeled data. He has served 
several terms on both the American Meteorological Society’s Committee on Probability and 
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Statistics and Committee on Artificial Intelligence Applications to Environmental Science PhD, 
University of Illinois. 
 
 
R. Saravanan 
Texas A&M University 
 
Dr. R. Saravanan is a Professor at Texas A&M University.  His research interests include the 
variability and predictability of climate on seasonal to millennial timescales, air-sea coupled 
interaction in both the tropical Atlantic and Pacific Oceans, and large-scale dynamics of the 
atmosphere and the oceans. His work has also addressed climate theory, hierarchical climate 
modeling, stochastic dynamics, and short-term climate prediction. Dr. Saravanan received his 
Master of Science in Physics from the Indian Institute of Technology, Kanpur in 1986 and his 
Ph.D. in Atmospheric and Oceanic Sciences from Princeton University in 1990. 
 
 
Duane Waliser 
Jet Propulsion Laboratory 
 
Dr. Duane Waliser is a Senior Research Scientist in the Water and Carbon Cycles Group, in the 
Earth Sciences Section at the Jet Propulsion Laboratory in Pasadena, CA, a Visiting Associate in 
the Geological and Planetary Sciences Division at Caltech and an Adjunct Professor in the 
Atmospheric and Oceanic Sciences Department at UCLA. His principle research interests lie in 
climate dynamics and in global atmosphere-ocean modeling, prediction and predictability, with 
emphasis on the Tropics. His recent work at JPL involves utilizing new and emerging satellite 
data sets to study weather and climate as well as advance our model simulation and forecast 
capabilities, particularly for long-range weather and short-term climate applications.  He 
received a B.S. in Physics and a B.S. in Computer Science from Oregon State University in 
1985, a Masters degree in Physics from U.C. San Diego in 1987, and his Ph.D. in Physical 
Oceanography from the Scripps Institution of Oceanography at U.C. San Diego in 1992. He is 
presently Co-Chair, WCRP/WWRP-THORPEX Madden-Julian Task Force, Co-Chair of the 
Center for Multi-scale Modeling and Applications (CMMAP) MJO Working Group, Co-chair of 
the WCRP/WWRP-THORPEX Year of Tropical Convection (YOTC) Activity. 
 
 
Bin Wang 
University of Hawaii 
 
Dr. Bin Wang is a Professor of Meteorology at the University of Hawaii. His current research 
themes include tropical intraseasonal oscillation, monsoons, ENSO, climate predictability and 
prediction, tropical cyclones, climate change, wave and instability, large-scale air-sea interaction, 
intermediate modeling of tropical climate.  Dr. Wang’s research approaches involve theoretical, 
numerical modeling, and observational analyses.  His research efforts focus on understanding of 
the fundamental physics governing variations of weather and climate.  Dr. Wang served as Co-
Chair of the Asian-Australian Monsoon Panel (AAMP)CLIVAR/WCRP, member, 
CLIVAR/WCRP Science Steering Group and the American Meteorological Society 
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(AMS)/Committee on Interaction of the Sea and Atmosphere.  Dr. Bin Wang received his MS in 
Meteorology from University of Science and Technology of China, Beijing and a Ph.D. in 1984 
in Geophysical Fluid Dynamics from Florida State University. 
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